Classes
CS 1068B

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Bouncing Ball

Announcement

) Chris Piech office hours moved to tomorrow.

> Midterm materials online this afternoon.

Sunday morning Handouts today on the
review website

Today’s Goal

1. Learn how to define a class in C++

Some large programs are in C++

LD)
ARCRAT

w!.’//

S
e 06 R
Aiﬁ

O

A
/8
.,,/é)):"

%

G

,“—**—

b .&p%q. : M il iwma&? ‘

o :?fa | almost all the code is written in C+-+.
- — - Sebastlan Thrun

How?

Decomposition Across Files

The Need For New Variable Types

A calendar program might want to store information
about dates, but C++ does not have a Date type.

A student registration system needs to store info
about students, but C++ has no Student type. %!

s o g
A music synthesizer app might want to store information about
users' accounts, but C++ has no Instrument type.

However, C++ does provide a feature for us to add
new data types to the language: classes.

— Writing a class defines a new data type.

mPesa

.PHONE REPAIP
2 ELECTRONICS

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

int main() { account.name
int n = 3;
BankAccount account;

} n

account.balance

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

int main() {
int n = 3;
BankAccount account;
account.name = “Alyssa’;

account.balance = 25;
cout << account.balance << endl;

account.name

account.balance

n

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

S

}.

Structs, The Original G

truct BankAccount {
string name;
double balance;

=11

’
Tt mAaanl) [
A A b= 5 b by &
int n = 3;
BanKACCOUNT account,
account.name = “Alyssa”;

account.balance = 25;
cout << account.balance << endl;

account.name

account.balance

n

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type

struct BankAccount {
string name;
double balance;

b

int main() {
int n = 3;
BankAccount account.
account.name = “Alyssa”;

gccoumntc. oatance =257
cout << account.balance << endl;

account.name

account.balance

n

Alyssa

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

¥

int main() A{
int n = 3;
BankAccount account;
account _name = “Alyssa’:

account.balance = 25; '
m—t—ﬂmm-t—ba-l-mee—wel. di;

account.name

account.balance

n

Alyssa

25

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

int main() {
int n = 3;
BankAccount account;
account.name = “Alyssa’;

account.balance = 725"

cout << account.balance << endl;

account.name

account.balance

n

Alyssa

25

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

int main() {

}

Structs, The Original G

* Venmo needs to store info about peoples bank
accounts, but C++ has no BankAccount type.

struct BankAccount {
string name;
double balance;

b

int main() {
int n = 3;
BankAccount anton;
BankAccount salome;
BankAccount mohammed;

mohammed.name
mohammed.balance
salome.name

salome.balance

anton.name

anton.balance

n

Bank Account parameter?

Vector<BankAccount>?

If structs are so wonderful, why would they
want something better?

Encapsulation

—\
Bank
main account
data

Wall of abstraction

main

Encapsulation

O)

withdraw(900) 1

getBalance —*//

transfer —

—

Bank
account
data

Wall of abstraction

Encapsulation

)
int main() {
BankAccount checking(”Bob", 742);
checking.withdraw(900);
cout << checking.getBalance() << endl;
}
Bank
account
data
—/

Wall of abstraction

Encapsulation

)
int main() {
BankAccount checking(”Bob", 742);
checking.withdraw(900);
cout << checking.getBalance() << endl;
}
Bank
data
—/

Wall of abstraction

Encapsulation

)
int main() {
BankAccount checking(”Bob", 742);
checking.withdraw(900);
cout << checking.getBalance() << endl;
}
Bank

data

false (;_‘

—

Wall of abstraction

Encapsulation

R
int main() {

BankAccount checking(”Bob", 742);
checking.withdraw(900);

cout << checking.getBalance() << endl;

Bank
account
data

getBalance-f//

—

Wall of abstraction

Encapsulation

R
int main() {

BankAccount checking(”Bob", 742);
checking.withdraw(900);

cout << checking.getBalance() << endl;

Bank
account
data

getBalance-f//

742 %

—

Wall of abstraction

Classes

class: A template for a new type of variable.

Elements of a Class

member variables: State inside each object.
— Also called "instance variables" or "fields"
— Declared as private
— Each object created has a copy of each field.

member functions: Behavior that executes inside each object.
— Also called "methods"

— Each object created has a copy of each method.
— The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.

— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.

Class Interface Devide

Interface Source
name.h name.cpp
Client reads Implementer writes
Shows methods and Implements methods

states instance
variables

Structure of a .h

// classname.h S —

. This is protection in case
multiple .cpp files include this .h,
so that its contents won't |
get declared twice

...

A

#pragma once

class declaration;

Structure of a .h

// classname.h
#ifndef _classname_h

#define classname h Exact same thing... just
nastier syntax

class declaration;

Hendif

Class Declaration

class ClassName { // in ClassName.h
public:
ClassName (parameters) ; // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
}s

'\

IMPORTANT: must put a semicolon at end of class declaration (argh)

Bank Account V1

// Initial version of BankAccount.h.

// Uses public member variables and no functions.
// Not good style, but we will improve it.

#pragma once

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance

¥

Using Objects

// v1 with public fields (bad) bal

BankAccount bal; name — »Chris”
bal.name = ”Chris”; -
bal.balance = 1.25; balance = 1.25

BankAccount ba2;
ba2.name = "Mehran"; ba2
ba2.balance = 9999.00; name "Mehran"

balance 9999. 00

* Think of an class as a way of grouping multiple variables.
— Each instance contains a name and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.

What about the nice functions?

Bank Account V1

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#pragma once

class BankAccount A

public:
bool withdraw(double money); // our first function
string name; // each BankAccount object

double balance; // has a name and balance

¥

Member Functions!

* InClassName.cpp,we write bodies (definitions) for the member functions that
were declared in the . hfile:

// ClassName.cpp
#include "ClassName.h"

// member function

returnType ClassName: :methodName(parameters) {
statements;
}

— Member functions/constructors can refer to the object's fields.

e Exercise: Write awithdraw member function to deduct money from a bank
account's balance.

The Implicit Parameter

* implicit parameter:
The object on which a member function is called.

— Duringthecall chris.withdraw(...),
the object named chris isthe implicit parameter.

— Duringthe call mehran.withdraw(...),
the object named mehran is the implicit parameter.

— The member function can refer to that object's member variables.
* We say that it executes in the context of a particular object.
* The function can refer to the data of the object it was called on.
* |t behaves as if each object has its own copy of the member functions.

Member Function Diagram

// BankAccount.cpp

bool BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;
return true;

¥

return false;

// client program
BankAccount chris;
BankAccount mehran;
chris.withdraw(5.00);

mehran.withdraw(99.00);

name ?chris™ balance 1.

25

void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;

name "mehran™ balance 9999

void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;

}

What about constructing a new one?

Initialization

* |t's annoying to take 3 lines to create a BankAccount and initialize
It

BankAccount ba;
ba.name = ”Chris";
ba.balance = 1.25; // tedious

 We'd rather specify the fields' initial values at the start:
BankAccount ba(”Chris", 1.25); // better

— We are able to this with most types of objects in C++ and Java.
— You can achieve this functionality using a constructor.

Constructors

ClassName: :ClLassName (parameters) {
statements to initialize the object;
}

e constructor: Initializes state of new objects as they are created.

— runs when the client declares a new object

— no return type is specified;
it implicitly "returns” the new object being created

— If a class has no constructor, C++ gives it a default constructor with no
parameters that does nothing.

Constructor Diagram

// BankAccount.cpp

BankAccount: :BankAccount(string n, double b) {

name = n;
balance = b;

// client program
BankAccount bl(”’Chris", 1.25);

BankAccount b2("Mehran", 9999);

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

The Keyword This

 AsinJava, C++ has a this keyword to refer to the current object.
— Syntax: this->member

— Common usage: In constructor, so parameter names can match the names of the
object's member variables:

BankAccount: :BankAccount(string name,
double balance) {
this->name = name;
this->balance = balance;

this uses -> not . becauseitis a"pointer"; we'll discuss that later

A Broken Promise

e precondition: Something your code assumes is true

at the start of its execution.
— Often documented as a comment on the function's header.

— If violated, the class can throw an exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {

if (balance < 0) {
throw balance;
}

this->name = name;
this->balance = balance;

¥

main

Encapsulation?

O)

withdraw(900) 1

getBalance /

—

Bank
account
data

Wall of abstraction

Adding Privacy

private:
type name;

e encapsulation: Hiding implementation details of an
object from its clients.

— Encapsulation provides abstraction.
* separates external view (behavior) frominternal view (state)

— Encapsulation protects the integrity of an object's data.

* A class's data members should be declared private.
— No code outside the class can access or change it.

Accessor Functions

* We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() <

return balance;
¥

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {

name = newName;
}

— Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia");

Operator Overloading

 C++ allows youto overload, or redefine, the behavior of many
common operators in the language:

—unary:+ - ++ -- * & | ~ new delete
— binary:+ - * / % 4= -= *= /= %= & | && || ~
== l=< > <=>= =[] -> () ,

* Overuse of operator overloading can lead to confusing code.

— Rule of Thumb: Don't abuse this feature. Don't define an overloaded
operator unless its meaning and behavior are completely obvious.

Extra Example: Calendar

C++ has no Dates ®

Date Class

int main() {
Date today(3,2,2016);
Date springBreak(19,3,2016);

cout << "spring break: << springBreak << endl;

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

today.incrementDay();

cout << "days until spring break: ";
cout << today.daysUntil(springBreak) << endl;

return O;

Bouncing Ball

Today’s Goal

1. Learn how to define a class in C++

