
Monday, October 31, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 11

CS 106B
Lecture 16: Dynamic
Memory Allocation

Today's Topics
•Logistics
•Chris Gregg's office hours for Tuesday moved to Wednesday 5-6pm
•Midterm information:
•Thursday November 3rd 7:00-9:00pm
•Last name starts with A-R: Cemex Auditorium (GSB)
•Last name starts with S-Z: Braun Auditorium (Mudd Chemistry Building)
•Midterm Review Session Video online
•Two practice midterms on the website.

•More on Pointers
•Mystery function
•Pointers and Structs
•The -> operator

•Dynamic Memory Allocation
•The new and delete keywords
•The "heap"

Recap of Pointer Syntax from the last lecture
•Pointer Syntax #1:
•To declare a pointer, use the * symbol. Example:
string *scaryPetPtr = NULL; // creates a pointer to a string and
 // sets it to point to a non-usable address.

•Pointer Syntax #2:
•To put a variable's address into a pointer, use the & symbol. Example:
string scaryPet = "werewolf"; // has some address (example: 0x12a5)
scaryPetPtr = &pet; // puts the address of scaryPet
 // into the petPtr variable.
 // The value of petPtr is now 0x12a5

•Pointer Syntax #3:
To get value of the variable a pointer points to, use the "*". Example:

string scaryPetCopy = *scaryPetPtr; // scaryPetCopy is now "werewolf"

Introduction to Pointers

What is a pointer??

a memory address!

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

8
0xab

c

-3
0xf3

a

-3
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

8
0xab

c

-3
0xf3

a

-3
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

8
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

8
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

4
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

11
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3

Answer:

a

11
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3
-2 11 7

Answer:

a

11
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3
-2 11 7

Answer:

a

11
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Mystery Function: What prints out?
void scaryMystery(int a, int& b, int* c) {
 a++;
 (*c)--;
 b += *c;
 cout << a << " " << b << " " << *c << " " << endl;
}

int main() {
 int a = 4;
 int b = 8;
 int c = -3;
 cout << a << " " << b << " " << c << " " << endl;
 scaryMystery(c, a, &b);
 cout << a << " " << b << " " << c << " " << endl;
 return 0;
}

 4 8 -3
-2 11 7
11 7 -3

Answer:

a

11
0x12

b

7
0xab

c

-3
0xf3

a

-2
0x5e

b

////
///////

c
0xab
0x7c

Pointers and Structs
• Pointers can point to a struct or

class instance as well as to a
regular variable.

• One way to do this would be to
dereference and then use dot
notation:

date
0xa12 month 10

day 31
daysInMonth()

toString()

...

...
Date d;
d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

dPtr
0xa12
0x7c

Pointers and Structs
• Pointers can point to a struct or

class instance as well as to a
regular variable.

• One way to do this would be to
dereference and then use dot
notation:

date
0xa12 month 10

day 31
daysInMonth()

toString()

...

...
Date d;
d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

• But, this notation is cumbersome,
and the parenthesis are
necessary because the "dot" has
a higher precedence than the *.

dPtr
0xa12
0x7c

Pointers and Structs

• So, we have a different, and more
intuitive syntax, called the "arrow"
syntax, -> :

date
0xa12 month 10

day 31
daysInMonth()

toString()

...

...
Date d;
d.month = 7;
Date* dPtr = &d;
cout << dPtr->month << endl;

• We will use the arrow syntax
almost exclusively when using
structs.

dPtr
0xa12
0x7c

Pointers and Structs

• The arrow syntax can be used to
set a value or call a function in a
struct via a pointer, as well:

date
0xa12 month 10

day 31
daysInMonth()

toString()

...

...
Date d;
d.month = 7;
Date* dPtr = &d;
cout << dPtr->month << endl;
p->day = 1;
cout << p->day << endl; // 1
cout << p->toString() << endl; // 10/1

dPtr
0xa12
0x7c

Dynamic Memory Allocation
• So far in this class, all variables we have seen have been local variables that we

have defined inside functions. Sometimes, we have had to pass in object
references to functions that modify those objects. For instance, take a look at
the following code:

void squares(Vector<int> &vec, int numSquares) {
 for (int i=0; i < numSquares; i++) {
 vec.add(i * i);
 }
}

• This function requires the calling function to create a vector to use inside the
function. This isn't necessarily bad, but could we do it a different way? In other
words, could we create the Vector inside the function and just pass it back?

Dynamic Memory Allocation

Vector<int> squares(int numSquares) {
 Vector<int> vec;
 for (int i=0; i < numSquares; i++) {
 vec.add(i * i);
 }
 return vec;
}

• Does this work?

• Could we create the Vector inside the function and just pass it back?

• It actually does, but there is an issue — you have to make a copy of the
Vector, which is inefficient. Remember, we would rather not pass around large
objects.

Dynamic Memory Allocation

Vector<int> &squares(int numSquares) {
 Vector<int> vec;
 for (int i=0; i < numSquares; i++) {
 vec.add(i * i);
 }
 return vec;
}

• Does this work?

• Okay…maybe we can do this?

• No :(This is actually really bad. Why? The scope of vec is only the function,
and you are not allowed to pass back a reference to a variable that goes out
of scope.

Dynamic Memory Allocation

Vector<int> *squares(int numSquares) {
 Vector<int> vec;
 for (int i=0; i < numSquares; i++) {
 vec.add(i * i);
 }
 return &vec;
}

• Does this work?

• Well, how about with pointers? Can we do this?

• No :(This is also really bad. Why? Same as before: the scope of vec is only
the function, and you are not allowed to pass back a pointer to a variable that
goes out of scope. When the function ends, the variable is destroyed, and
your program will almost certainly crash.

Dynamic Memory Allocation
• What do we want here? What's the big deal?

• What we really want is really two things:
1. a way to reserve a section of memory so that it remains available to us

throughout our entire program, or until we want to destroy it (give it back to the
operating system)

2. a way to reserve any amount of memory we want at the time we need it.
• You might think that global variables are what we want, but that would be

incorrect.
• Global variables can be accessed by any function in our program, and that isn't

what we want. Also, global variables have a fixed size at compile time, and that
isn't what we want, either.

Dynamic Memory Allocation: new
• C++ allows you to request memory from the operating system using the keyword
new. This memory comes from the "heap" whereas variables you simply declare
come from the "stack." Both of those terms will become important in CS 107, but
for now, you need to know this:

• Variables on the stack have a scope based on the function they are declared in.
• Memory from the heap is allocated to your program from the time you

request the memory until the time you tell the operating system you no
longer need it, or until your program ends.

• To request memory from the heap, we use the following syntax:
type *variable = new type; // allocate one element
or
type *variable = new type[n]; // allocate n elements

Dynamic Memory Allocation: new
• Examples:

• The second example (tenInts) is very powerful — the memory you are given
is an array guaranteed by the operating system to be contiguous. So, that's
how we allocate an array of items dynamically!

• Notice that new returns a pointer to the type you request — this is important!
This is why we need to learn about pointers — in order to dynamically allocate
memory, you have to use a pointer.

int *anInteger = new int; // create one integer on the heap

int *tenInts = new int[10]; // create 10 integers on the heap

Arrays
• We have been using Vectors in class so far, and we've said "Oh, a Vector is just

built on top of an array." So, let's talk about arrays for a bit. They are "lower
level" than Vectors, and they are more limited.

int firstArray[10]; // create a static array on the stack;
 // size of 10 is known at compile time

int *secondArray = new int[10]; // create 10 integers on the
 // heap. Dynamically allocated.
// fill the arrays with values
for (int i=0; i < 10; i++) {
 firstArray[i] = i*2; // evens
 secondArray[i] = i*2 + 1; // odds
}
• Arrays are not objects, and they don't have functions, so there isn't any

function like firstArray.length(). You have to keep track of the length!

Arrays

const int arrayLen = 10;

int firstArray[arrayLen]; // create a static array on the stack;
 // size of 10 is known at compile time

int *secondArray = new int[arrayLen]; // create 10 integers on the
 // heap. Dynamically allocated.
// fill the arrays with values
for (int i=0; i < arrayLen; i++) {
 firstArray[i] = i*2; // evens
 secondArray[i] = i*2 + 1; // odds
}

• You have to keep track of the length!

• Notice, by the way, that we access our arrays by using bracket notation:
• firstArray[i] gives us the value at index i in the array.

Arrays

const int arrayLen = 10;

int *myArray = new int[arrayLen]; // create 10 integers on the
 // heap. Dynamically allocated.
// fill the array with values
for (int i=0; i < arrayLen; i++) {
 secondArray[i] = i*2 + 1; // odds
}

// add another?
secondArray.add(42); // nope!! Arrays don't have functions
secondArray[10] = 42; // nope!! Off the end of the memory
 // space you were given

• Unlike a vector, you can't just add another element past the end -- you are
limited to the amount you asked for.

• When using arrays, you have to work with the limitations. We're taking off the
training wheels!

Dynamic Memory Allocation: under the hood
• The following statement requests an array of ten integers from the operating

system (OS).

• The OS looks for enough unallocated memory in a row to give you, then returns
a pointer to that location (red is used, blue is free):

int *tenInts = new int[10]; // create 10 integers on the heap

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

Dynamic Memory Allocation: under the hood
• The following statement requests an array of ten integers from the operating

system (OS).

• For the above statement, the OS might pick row 3, column 4 for your request.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

int *tenInts = new int[10]; // create 10 integers on the heap

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• The following statement requests an array of ten integers from the operating
system (OS).

• For the above statement, the OS might pick row 3, column 4 for your request.

int *tenInts = new int[10]; // create 10 integers on the heap

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• The following statement requests an array of ten integers from the operating
system (OS).

• For the above statement, the OS might pick row 3, column 4 for your request.

int *tenInts = new int[10]; // create 10 integers on the heap

not your
memory!

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• What would happen if you do try to write a value into a location you don't own?
• Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

not your
memory!

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• What would happen if you do try to write a value into a location you don't own?
• Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

not your
memory!

Sadly, the compiler can't tell. You're on your own!

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• What would happen if you do try to write a value into a location you don't own?
• Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

not your
memory!

Maybe. The OS can say "I don't think so!" but it isn't guaranteed.

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• What would happen if you do try to write a value into a location you don't own?
• Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

not your
memory!

Maybe. The OS might be okay with it,
for now...it isn't guaranteed.

Dynamic Memory Allocation: under the hood

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5

tenInts
43

0x7c

• What would happen if you do try to write a value into a location you don't own?
• Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

not your
memory!

...?

Buffer Overflows

Buffer Overflows
• In 1988, a computer "worm" written by

Cornell graduate student Robert Morris, Jr.
proliferated through government and
university computers, bringing down the
nascent Internet.

• The worm took advantage of a "buffer
overflow" in a program, by writing code into a
location that was outside the area that the
program was given.

• The worm tricked the program into running its code, and was able to work its
way through the network to other computers.

• The worm had a bug that made it eat up all of the computer's memory, thereby
crashing the systems, one by one.

Buffer Overflows
• Robert Morris, Jr. became the first person in

the U.S. convicted under the Computer Fraud
and Abuse Act, and was fined, performed
community service and served a three-year
probation.

• He claimed that he was trying to demonstrate
computer security faults, but the court did not
believe him.

• He did bounce back: now he is a professor of
computer science at MIT, and he co-founded
the start-up incubator, Y-Combinator.

Dynamic Memory Allocation: delete
• The memory you request is yours until the end of the program, if you need it that

long.
• You can pass around the pointer you get back as much as you'd like, and you

have access to that memory through that pointer in any function you pass the
pointer to.

• But, what if you are done using that memory? Let's say you create an array of
10 ints, use them for some task, and then are done with the memory?

• In this case, you delete the memory, giving it back to the Operating System:

int *tenInts = new int[10]; // create 10 integers on the heap
for (int i=0; i < 10; i++) {
 tenInts[i] = randomInteger(1,1000);
}
someFunction(tenInts);
// done using tenInts
delete [] tenInts; // the [] is necessary for an array

Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) {
 // allocate space for a new array
 int *multiple = new int[length];

 for (int i=0; i < length; i++) {
 multiple[i] = origArray[i] * 2; // double each value
 }

 printArray(multiple, length); // prints each value doubled

 delete [] multiple; // give back the memory

 multiple = new int[length * 2]; // now twice as many
 for (int i=0; i < length; i++) {
 multiple[i*2] = origArray[i] * 2; // double each value
 multiple[i*2+1] = origArray[i] * 3; // triple the value
 }

 printArray(multiple, length * 2);

 delete [] multiple; // clean up
}

Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) {
 // allocate space for a new array
 int *multiple = new int[length];

 for (int i=0; i < length; i++) {
 multiple[i] = origArray[i] * 2; // double each value
 }

 printArray(multiple, length); // prints each value doubled

 delete [] multiple; // give back the memory

 multiple = new int[length * 2]; // now twice as many
 for (int i=0; i < length; i++) {
 multiple[i*2] = origArray[i] * 2; // double each value
 multiple[i*2+1] = origArray[i] * 3; // triple the value
 }

 printArray(multiple, length * 2);

 delete [] multiple; // clean up
}

• First: notice that we delete
multiple, and then use it again!

• Is that allowed??

Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) {
 // allocate space for a new array
 int *multiple = new int[length];

 for (int i=0; i < length; i++) {
 multiple[i] = origArray[i] * 2; // double each value
 }

 printArray(multiple, length); // prints each value doubled

 delete [] multiple; // give back the memory

 multiple = new int[length * 2]; // now twice as many
 for (int i=0; i < length; i++) {
 multiple[i*2] = origArray[i] * 2; // double each value
 multiple[i*2+1] = origArray[i] * 3; // triple the value
 }

 printArray(multiple, length * 2);

 delete [] multiple; // clean up
}

• It is! delete does not
delete any variables!
Instead, it follows the
pointer and returns the
memory to the OS!

• However, you are not
allowed to use the
memory after you have
deleted it.

• This does not preclude
you from re-using the
pointer itself.

• First: notice that we delete
multiple, and then use it again!

• Is that allowed??

Dynamic Memory Allocation: delete
• What does this print out, by the way for an origArray = {1, 5, 7}?
void arrayFun(int *origArray, int length) {
 // allocate space for a new array
 int *multiple = new int[length];

 for (int i=0; i < length; i++) {
 multiple[i] = origArray[i] * 2; // double each value
 }

 printArray(multiple, length); // prints each value doubled

 delete [] multiple; // give back the memory

 multiple = new int[length * 2]; // now twice as many
 for (int i=0; i < length; i++) {
 multiple[i*2] = origArray[i] * 2; // double each value
 multiple[i*2+1] = origArray[i] * 3; // triple the value
 }

 printArray(multiple, length * 2);

 delete [] multiple; // clean up
}

void printArray(int *array,
 int length) {
 cout << "[";
 for (int i=0; i < length; i++) {
 cout << array[i];
 if (i < length-1) {
 cout << ", ";
 }
 }
 cout << "]" << endl;
}

Output:
[2, 10, 14]
[2, 3, 10, 15, 14, 21]

Dynamic Memory Allocation: under the hood
• The memory you request is yours until the end of the program, if you need it that

long.
• You can pass around the pointer you get back as much as you'd like, and you

have access to that memory through that pointer in any function you pass the
pointer to.

• Without knowing it, you have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,
Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.

Thought experiment: the scary world without dynamic memory
• What if (horror!) we took away the Stanford library and asked you to write a

Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page class, instead):

struct Page {
 string text;
 double leftM, rightM, topM, bottomM; // margins
 string header, footer;
 int textColor;
};

• How many pages should we allow the user of Stanford Word?

Thought experiment: the scary world without dynamic memory
• What if (horror!) we took away the Stanford library and asked you to write a

Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page class, instead):

struct Page {
 string text;
 double leftM, rightM, topM, bottomM; // margins
 string header, footer;
 int textColor;
};

• How many pages should we allow the user of Stanford Word? 5?

int main() {
 Page pages[5]; // array of 5 pages
}

Thought experiment: the scary world without dynamic memory
• People probably wouldn't buy your program if you limited them to five pages.

• Okay, let's make it bigger. How big? 6 pages? 100 pages? 1,000,000 pages?
• This is a no-win battle.

• Too small, and your user might be unhappy.
• Too big? Waste of memory! Your program would hog memory if you did the

following:
int main() {
 Page pages[1000000]; // array of a million pages
}

Next Time: Building a Vector class with arrays
• In the next lecture, we will discuss how the Vector is built, using dynamic

memory.
• We will need to keep track of all the details ourselves:

• How much space we have allocated for the Vector
• How many items are in the Vector
• How to add / remove / insert into the Vector
• How to expand the Vector

Recap
• Dynamic Memory Allocation:

• new: used to request heap memory that lasts for the rest of your
program, or until you don't need it anymore.

• delete: used to return memory to the operating system.
• If you use new to request memory, you should delete it somewhere in

your program.
• You are not allowed to use memory that has been deleted.
• deleting memory does not somehow "delete" the pointer variable -- it

goes to the location in memory pointed to, and tells the operating system
that we are done with it.

References and Advanced Reading

•References:
•new and delete: https://www.tutorialspoint.com/cplusplus/cpp_dynamic_memory.htm
•Video on dynamic memory allocation: https://www.youtube.com/watch?v=OrDjGp_y1H4

•Advanced Reading:
• Fun video on pointers: https://www.youtube.com/watch?v=B7lVHq-cgeU
• Morris Worm: https://en.wikipedia.org/wiki/Morris_worm
• Buffer Overflow vulnerabilities: https://en.wikipedia.org/wiki/Buffer_overflow

Extra Slides (will cover next time)

Dynamic Memory Allocation: your responsibilities
• With great power comes great responsibility
• You have a responsibility when using dynamic memory allocation to delete anything you

have requested via new.
• This is the contract you make with the operating system: if you're done with the memory, you

should return it. The OS will take it back when your program ends, but this wastes memory,
and this is called a "memory leak."

const int INIT_CAPACITY = 10000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo() {
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i) {
 return bigArray[i];
}

int main()
{
 for (int i=0;i<10000;i++){
 Demo demo;
 cout << i << ": " << demo.at(1234) << endl;
 }
 return 0;
}

This program crashed my entire
computer when I ran it. Why?

Dynamic Memory Allocation: your responsibilities
• This program crashed my entire computer when I ran it. Why?
• We're allocating a ton of memory, and not deleting it!
• We can fix it by adding a "destructor" -- when the class instance goes out of scope, the

destructor is called, cleaning up the memory for us.

const int INIT_CAPACITY = 10000000;

class Demo {
public:
 Demo(); // constructor
 ~Demo(); // destructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo() {
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

Demo::~Demo() {
 delete[] big_array;
}

string Demo::at(int i) {
 return bigArray[i];
}

int main()
{
 for (int i=0;i<10000;i++){
 Demo demo;
 cout << i << ": " << demo.at(1234) << endl;
 }
 return 0;
}

