CS 106B

Lecture 16: Dynamic stack
Memory Allocation

Monday, October 31, 2016

Programming Abstractions f
Fall 2016 :
Stanford University . FTTTTTTToooossomoooooq
Computer Science Department
heap

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 11

Today's Topics

| Ogistics
*Chris Gregg's office hours for Tuesday moved to Wednesday 5-6pm
e Midterm information:
e [hursday November 3rd 7:00-9:00pm
e| ast name starts with A-R: Cemex Auditorium (GSB)
e| ast name starts with S-Z: Braun Auditorium (Mudd Chemistry Building)
eMidterm Review Session Video online
¢ [WO practice midterms on the website.

e\More on Pointers

e Mystery function

e Pointers and Structs

® [he -> operator

eDynamic Memory Allocation

¢ [he new and delete keywords
® [he "heap”

Recap of Pointer Syntax from the last lecture

ePointer Syntax #1:

¢ [0 declare a pointer, use the * symbol. Example:
string *scaryPetPtr = NULL; // creates a pointer to a string and
// sets it to point to a non-usable address.

ePointer Syntax #2:
¢ [0 put a variable's address into a pointer, use the & symbol. Example:
string scaryPet = "werewolf"; // has some address (example: 0x12a5)

scaryPetPtr = &pet; // puts the address of scaryPet
// into the petPtr variable.
// The value of petPtr is now 0xl2a5

ePointer Syntax #3:
To get value of the variable a pointer points to, use the "*". Example:

string scaryPetCopy = *scaryPetPtr; // scaryPetCopy is now "werewol o

Introduction to Pointers

What is a pointer??

a memory address!

Mystery Function: What prints out?

void scaryMystery(int a, int& b, intx c) {
a++;
(*xc)——;
b += *c;
cout << a << " " << b<<" " << xc<<"" << endl;

b

int main() {
int a =
int b = 8;
int ¢ =
cout << a << << b <<
scaryMystery(c, a, &b);
cout << a << " " << b<<""<<cc<<"" << endl;
return 0;

<< C << << endl;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(xC)=; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

int main() {

int a = 4;

int b = 8;

int ¢ = -3;

cout << a << " " << b <<""<<cc<<"" << endl;
scaryMystery(c, a, &b);

cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(xC)=; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(xC)=; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(x€)=; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(x€)=; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

C

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(xC)—; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

C

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

Answer:;
4 8 -3

void scaryMystery(int a, int& b, intx ¢uaf b C
| at+;
(xC)—; Ox5e |[//II11]
| b += *c;
<<

COUt << a << 1 11 << b << 11 11 1 11

b

C

int main() {
int a = 4; !lgl
int b = 8; Oxf3
int ¢ = -3;
cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);
cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

void scaryMystery(int a, int& b, intsx b
a++:
(kC)——;
b += *C;
Cout << a << 11 11 << b << 11 11

Answer:;
4 8 -3

Oxf3

cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);

cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

void scaryMystery(int a, int& b, intsx b
a++:
(kC)——;
b += *C;
Cout << a << 11 11 << b << 11 11

Answer:

4 8 -3
C -2 11 7

Oxf3

cout << a << " " << ph<<" " << c<<"" << endl;
scaryMystery(c, a, &b);

cout << a << " " << bhb<<""<<c<<<"" << endl;
return 0;

Mystery Function: What prints out?

void scaryMystery(int a, int& b, intsx b
a++:
(kC)——;
b += *cC;

cout << a << " " Answer:
& 4 8 -3
int main() { -2 1T

int a = 4;

int b = 8;

int ¢ = -3;

cout << a << " " << b<<""<<cc<<"" << endl;

scaryMystery(c, a, &b);

cout << a << " " << b<<""<<cc<<"" << endl;

return 0;

Mystery Function: What prints out?

void scaryMystery(int a, int& b, intsx b
a++:
(kC)——;
b += *C;
cout << a << " "

Answer:

4 8 -3
-2 11 7
11 7 -3

b

int main() {
int a =
int b = 8;
int ¢ =
cout << a << " " << b<<""<<cc<<"" << endl;
scaryMystery(c, a, &b);

cout << a << " " << b<<""<<cc<<"" << endl;
return 0;

Pointers and Structs

Pointers can point to a struct or
class instance as well as to a
regular variable.

- One way to do this would be to
dereference and then use dot
notation:

Date d;

d.month = 7;

Date* dPtr = &d;

cout << (*dPtr).month << endl;

date
month
day 31

daysinMonth()
toString()

Ox7c

Pointers and Structs

Pointers can point to a struct or
class instance as well as to a
regular variable.

- One way to do this would be to
dereference and then use dot
notation:

Date d;

d.month = 7;

Date* dPtr = &d;

cout << (*dPtr).month << endl;

But, this notation is cumbersome,
and the parenthesis are
necessary because the "dot" has
a higher precedence than the *.

date
month
day 31

daysinMonth()
toString()

Ox7c

Pointers and Structs

- S0, we have a different, and more
intuitive syntax, called the "arrow”
syntax, =>

Date d;

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;

- We will use the arrow syntax
almost exclusively when using
structs.

date
month
day

daysinMonth()
toString()

Ox7c

Pointers and Structs

date
month 10
- The arrow syntax can be used to
set a value or call a function in a day 31
struct via a pointer, as well: d aysl N Month()
Date d;

toString()

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;
p->day = 1;

cout << p->day << endl; // 1
cout << p->toString() << endl; // 10/1

Dynamic Memory Allocation

- So far in this class, all variables we have seen have been |local variables that we
have defined inside functions. Sometimes, we have had to pass in object

references to functions that modify those objects. For instance, take a look at
the following code:

void squares(Vector<int> &vec, int numSquares) {
for (int i=0; i < numSquares; i++) {
vec.add(i x 1i);
}

}

- This function requires the calling function to create a vector to use inside the
function. This isn't necessarily bad, but could we do it a different way? In other
words, could we create the Vector inside the function and just pass it back?

Dynamic Memory Allocation

- Could we create the Vector inside the function and just pass it back?

Vector<int> squares(int numSquares) {

Vector<int> vec;

for (int i=0; i < numSquares; i++) {
vec.add(i x i);

}

return vec;

Does this work?

- It actually does, but there is an issue — you have to make a copy of the

Vector, which is inefficient. Remember, we would rather not pass around large
objects.

Dynamic Memory Allocation

- Okay...maybe we can do this?

Vector<int> &squares(int numSquares) {
Vector<int> vec;

for (int i=0; i < numSquares; i++) {
vec.add(i *x i);
¥

return vec;

Does this work?

- No :(This is actually really bad. Why? The scope of wvec is only the function,

and you are not allowed to pass back a reference to a variable that goes out
of scope.

Dynamic Memory Allocation

- Well, how about with pointers? Can we do this?

Vector<int> *squares(int nuquuares) {
Vector<int> vec;

for (int i=0; i < numSquares; i++) {
vec.add(i *x i);
¥

return &vec;

Does this work?

- No :(This is also really bad. Why? Same as before: the scope of vec is only

the function, and you are not allowed to pass back a pointer to a variable that

goes out of scope. When the function ends, the variable is destroyed, and ==
your program will almost certainly crash.

Dynamic Memory Allocation

- What do we want here? What's the big deal?

- What we really want is really two things:

1. a way to reserve a section of memory so that it remains available to us
throughout our entire program, or until we want to destroy it (give it back to the
operating system)

2. away to reserve any amount of memory we want at the time we need it.

- You might think that global variables are what we want, but that would be
Incorrect.
- Global variables can be accessed by any function in our program, and that isn't

what we want. Also, global variables have a fixed size at compile time, and that
Isn't what we want, either.

Dynamic Memory Allocation: new

- C++ allows you to request memory from the operating system using the keyword
new. [his memory comes from the "heap" whereas variables you simply declare

come from the "stack." Both of those terms will become important in CS 107, but
for now, you need to know this:

- Variables on the stack have a scope based on the function they are declared in.
Memory from the heap is allocated to your program from the time you
request the memory until the time you tell the operating system you no
longer need it, or until your program ends.

- To request memory from the heap, we use the following syntax:

type *variable = new type; // allocate one element
or

type *variable = new type[n]; // allocate n elements

Dynamic Memory Allocation: new

Examples:

int xanInteger = new int; // create one integer on the heap

int xtenInts = new int[1@]; // create 10 integers on the heap

- The second example (tenInts) is very powerful — the memory you are given

IS an array guaranteed by the operating system to be contiguous. So, that's
how we allocate an array of items dynamically!

Notice that new returns a pointer to the type you request — this is important!

This is why we need to learn about pointers — in order to dynamically allocate
memory, you have to use a pointer.

- We have been using Vectors in class so far, and we've said "Oh, a Vector is just
built on top of an array." So, let's talk about arrays for a bit. They are "lower
level" than Vectors, and they are more limited.

int firstArrayl[10]; // create a static array on the stack;
// size of 10 is known at compile time

int xsecondArray = new int[10]; // create 10 integers on the
// heap. Dynamically allocated.
// Till the arrays with values
for (int i=0; i < 10; i++) {
firstArrayl[i] = i*x2; // evens
secondArray[i] = ix2 + 1; // odds

}
*Arrays are not objects, and they don't have functions, so there isn't any
function like firstArray.length (). You have to keep track of the length! {! 3

““““““““

You have to keep track of the length!

const int arrayLen = 10;

int firstArraylarraylLen]; // create a static array on the stack;
// size of 10 is known at compile time

int *xsecondArray = new int[arraylLen]; // create 10 integers on the
| // heap. Dynamically allocated.
// Till the arrays with values
for (int i=0; i < arrayLen; i++) {
firstArrayl[i]l = ix2; // evens
secondArray[i] = ix2 + 1; // odds

Notice, by the way, that we access our arrays by using bracket notation:
firstArray[i] gives us the value at index i in the array.

Unlike a vector, you can't just add another element past the end -- you are
limited to the amount you asked for.

const int arrayLen = 10;

int *myArray = new intl[arraylLen]; // create 10 integers on the
// heap. Dynamically allocated.
// Till the array with values
for (int i=@0; i < arraylLen; i++) {
secondArray[i] = ix2 + 1; // odds
+

// add another?
secondArray.add(42); // nope!! Arrays don't have functions
secondArray[10] = 42; // nope!! O0ff the end of the memory
| // space you were given
When using arrays, you have to work with the limitations. We're taking off the
training wheels!

Dynamic Memory Allocation: under the hood

- The following statement requests an array of ten integers from the operating
system (OS).

int xtenInts = new int[10]; // create 10 integers on the heap

- The OS looks for enough unallocated memory in a row to give you, then returns
a pointer to that location (red is used, blue is free):

Dynamic Memory Allocation: under the hood

- The following statement requests an array of ten integers from the operating
system (OS).

int xtenInts = new int[10]; // create 10 integers on the heap

For the above statement, the OS might pick row 3, column 4 for your request.

Dynamic Memory Allocation: under the hood

- The following statement requests an array of ten integers from the operating
system (OS).

int xtenInts = new int[10]; // create 10 integers on the heap

For the above statement, the OS might pick row 3, column 4 for your request.

tenints

Dynamic Memory Allocation: under the hood

- The following statement requests an array of ten integers from the operating
system (OS).

int xtenInts = new int[10]; // create 10 integers on the heap

For the above statement, the OS might pick row 3, column 4 for your request.

tenints

not your
memory!

Dynamic Memory Allocation: under the hood

- What would happen if you do try to write a value into a location you don't own?
Possibilities:

1. Compiler won't let you.

2. Crash (seg fault)

3. Nothing, as no one else is using that area

4. Headline news for you in the New York Times.

tenints

not your
memory!

Dynamic Memory Allocation: under the hood

- What would happen if you do try to write a value into a location you don't own?

Possibilities:

1. Compiler won't let you. |Sadly, the compiler can't tell. You're on your own!

2. Crash (seg fault)
3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

tenints

not your
memory!

Dynamic Memory Allocation: under the hood

- What would happen if you do try to write a value into a location you don't own?
Possibilities:
1. Compiler won't let you.

2. Crash (seg fault) | Maybe. The OS can say "l don't think so!" but it isn't guaranteed.

3. Nothing, as no one else is using that area
4. Headline news for you in the New York Times.

tenints

not your
memory!

Dynamic Memory Allocation: under the hood

- What would happen if you do try to write a value into a location you don't own?

Possibilities:

1. Compiler won't let you.

2. Crash (seg fault)

3. Nothing, as no one else is using that area

4. Headline news for you in the New York Times.

Maybe. The OS might be okay with it,
for now...it isn't guaranteed.

tenints

not your
memory!

Dynamic Memory Allocation: under the hood

- What would happen if you do try to write a value into a location you don't own?

Possibilities:

1. Compiler won't let you.

2. Crash (seg fault)

3. Nothing, as no one else is using that area

4. Headline news for you in the New York Times.

tenints

not your
memory!

Buffer Overflows

“All the News
That’s Fit to Print"

~-

e Netw

Pork Cimes :

Lats Edtion
&-Yut?-l-vm-my-uc
“-M Tmﬁ‘q
o
uosn-unna. i;x

VOLCXXX VI, . NO. 47479 Copyrah €150 T e vork T ~

NEW YORK, FRIDAY, NOVEMBER 4, 1383

“ " Tk Gy

“Virus’ in Military

Ilmnmumlr'a—qw
aboatl (e

Computers
Disrupts Systems Nat!onwnde

By JOHN MARKOFF -
mfilary ofends ressacchens
and

Uazs freraniiy
the 2ation’s corpaiers, & Dipest
of Deferse setwerk bas

Wb same seasithy midtary

dmmum«d e CompuUeTs

PENTAGON REPORTS

IMPROPER CHARGES

-FOR CONSULTANTS

CONTRACTORS CRITICIZED

B e R g

Inquary Shows Routine Billing
of Government by Industry =

Parilin Rl Vica on Foes, Soma Debious
Coorpaoes virumes A0 10 DvIed —_—
becanse dyoy paraidl In the com By JOHN H. CUSHMAN J -

pumer the behavier of b
Jepied) viruses. A varus i3 8 pea-

RO B 0 P T L
VASHINGION, Nov. 3 — A Prels-

L it ..Jscam'sl

e

There ki boes & preseasted
deciing in the perotriage of ¢f)-
Sble Arericsrs who sow regie-
sered 12 vore, 3 ressarch grocp
repans.

numlry.lkmtuugza

Tha praup's vudy cavdaded
Har i masy of e 2 sens
whwre Mol Tguees are aeais
ehic Lhe dechoe was amang

The alfected corepetors carTy 2
crecendous variety of dusieess
and research lormation arseng

Lrars might 3008 & PIOVICHIVE
bet otherwies Sarmiess Mp
12 appear on e

memery. In Gds :l.-. the n-u

progrars & rethlag more than
reprodacs e rapidly

The pOograee wes spparctly &

real of ar Operimest wakh
—

Caniimend on Foge A21, Colarse ?

virus tx o have corsputer, G s ekher plarced frveatipates bas fourd Syt (b ra-
grw:mynu;m“ w7 om 3 Soppy dik mears 13 be wae Son's argeat = iBtary costraciors oo
By lwe yeaerdiy h the - o b ::nlhudbl’hnp-u
! were il whan e s

: & - - - e varss the :r':au ok ever O weer \ckpbeee Lnes cx | |32 coomskanes, ofen wiboer Jartifica-
Gur. Michael 8. Dulkaicis having his pictare cicen by ° mawmm-rwhw :‘,:_"“"’“""“"’“"'" The resort of e krvestipation sakd
@ 20 yearobd Tam a1 3 1oum mseing In Falrser T, bieOttio. Leks than 3 week afier Mr. Dicakis ac- ™he he: Sl refher e mftary’s carrest

Pa. during a toar of the Noreast in which be e keowdeged being 2 iberal, Mor, Biach cxid = mmhamﬁ;' ey nex, the conraciany’
Mwmmun»puuv.u&- - m‘w—mhuammu&.m; m:}}”&m"m'w o ymem, || e w3 scae thar S Gov.
- OO0 virTsaly brisg oor camapating mm“‘.w‘u" ;;m‘::m..m llmb‘:

- = 2 its kases 3zd haap U9 13 Pemsehves Frees Gere, 'cm:
Registration Off It there for seeme tima” wid U PG cin be paned m | [SSIN6 DeRE Braltie CRel
L v = Cack Cole, Cepaty S changes i3 correct the fawe.

ﬁ. nce zm vae corky mazaper a0 Lawsesce !w;'m e weaet of “Btlﬂwhmm

oo consslaaais
mm M lu 0 Pesragon lk
o 0 0 1o be pad Bor By he
partmest. Ofles,
wre discovernd, this cont Lx not et
Beoader Lovk o1 Conseliants
The Justce Dopuie Lrses's com Ly

cravdsal srveslipelion bes focesed ol
trzikn on commukants gad detr role

otkied for wsing conslans 30

freels Wow the Perraiin's oun Sves

munm,mnmmmn'
Deferoe De

Buffer Overflows

- In 1988, a computer "worm" written by o
’ | eNelu Hork Gtmeﬁ sEEEs
Cornell graduate student Robert Morris, Jr. i@h L - e

proliferated through government and R %%ﬁ%
university computers, bringing down the =
nascent Internet.

Comars CONTRAGTORS CRIICIZED
el = S

IMu(ysnovnﬁwl BII g

- The worm took advantage of a "buffer
overflow" in a program, by writing code into a
location that was outside the area that the
program was given.

- The worm tricked the program into running its code, and was able to work its
way through the network to other computers.

- The worm had a bug that made it eat up all of the computer's memory, thereby e,
crashing the systems, one by one. S

Buffer Overflows

- Robert Morris, Jr. became the first person in INFORMATIONWEEK

the U.S. convicted under the Computer Fraud
and Abuse Act, and was fined, performed
community service and served a three-year
probation.

- He claimed that he was trying to demonstrate
computer security faults, but the court did not
believe him.

- He did bounce back: now he is a professor of JUDGMEN]' []Ay
Computer SC|ence at I\/”T, and he Co_founded The Sentencing opfﬂRobert Morris Jr.

the start-up incubator, Y-Combinator.

Dynamic Memory Allocation: delete

- The memory you request is yours until the end of the program, if you need it that
long.

*You can pass around the pointer you get back as much as you'd like, and you
have access to that memory through that pointer in any function you pass the
pointer to.

But, what if you are done using that memory? Let's say you create an array of
10 ints, use them for some task, and then are done with the memory?

In this case, you delete the memory, giving it back to the Operating System:

int xtenInts = new int[10]; // create 10 integers on the heap
for (int i=0; i < 10; i++) {

tenInts[i] = randomInteger(1,1000);
I3

someFunction(tenInts);
// done using tenInts
delete [] tenInts; // the [] is necessary for an array

Dynamic Memory Allocation: delete

- delete is sometimes confusing. Take a look at the following function:

void arrayFun(int xorigArray, int length) {
// allocate space for a new array
int *multiple = new int[length];

for (int i=0; i < length; i++) {
multiple[i] = origArrayl[i] x 2; // double each value
¥
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length x 2]; // now twice as many
for (int i=0; i < length; i++) {
multiple[ix*2] = origArray[i] * 2; // double each value

multiple[i*2+1] = origArrayl[i] * 3; // triple the value
¥

printArray(multiple, length x 2);

delete [] multiple; // clean up

Dynamic Memory Allocation: delete

- delete is sometimes confusing. Take a look at the following function:

void arrayFun(int *origArray, int length) { - First: notice that we delete
// allocate space for a new array , . :
int smultiple = new int[length]; multiple, and then use it again!

ls that allowed??
for (int i=0; i < length; i++) {

multiple[i] = origArrayl[i] x 2; // double each value
¥

printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length * 2]; // now twice as many
for (int i=0; i < length; i++) {
multiple[ix*2] = origArray[i] * 2; // double each value

multiple[i*2+1] = origArrayl[i] * 3; // triple the value
¥

printArray(multiple, length x 2);

delete [] multiple; // clean up

Dynamic Memory Allocation: delete

- delete is sometimes confusing. Take a look at the following function:

void arrayFun(int xorigArray, int length) { - First: notice that we delete

// allocate space for a new array . . .
int smultiple = new int[length]; multiple, and then use it again!
ls that allowed??

for (int i=0; i < length; i++) {

multiple[i] = origArrayl[i] % 2; // double each value - ltis! delete does not
; delete any variables!
printArray(multiple, length); // prints each value doubled Insteaa, it follows the

pointer and returns the

delete [] multiple; // give back the memory memory to the OS!

multiple = new int[length * 2]; // now twice as many

for (int i=0; i < length; i++) { .
multiple[i*2] = origArray[il * 2; // double each value However, you are not
multiple[ix2+1] = origArrayl[il * 3; // triple the value allowed to use the

’ | memory after you have

deletedit.

printArray(multiple, length x 2);

delete [] multiple; // clean up

Dynamic Memory Allocation: delete

- What does this print out, by the way for an origArray = {1, 5, 7}7?

void arrayFun(int xorigArray, int length) { void printArray(int *array,

// allocate space for a new array
int xmultiple = new int[length];

for (int i=0; i < length; i++) {
multiple[i] = origArrayl[i] x 2; // double each value
¥
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length x 2]; // now twice as many
for (int i=0; i < length; i++) {
multiple[ix*2] = origArray[i] * 2; // double each value

multiple[i*2+1] = origArrayl[i] * 3; // triple the value
¥

printArray(multiple, length x 2);

delete [] multiple; // clean up

int length) {
Cout << 1 [II;
for (int i=0; i < length; i++) {
cout << arraylil;
if (i < length-1) {
cout << ", "y
b

}

cout << "]" << endl;

Output:
[2, 10,
[21 3/

14]

10, 15, 14,

21]

Dynamic Memory Allocation: under the hood

- The memory you request is yours until the end of the program, if you need it that
long.
*You can pass around the pointer you get back as much as you'd like, and you

have access to that memory through that pointer in any function you pass the
pointer to.

- Without knowing it, you have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,

Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.

Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although

you'd probably make a Page class, instead):

struct Page {
string text;
double leftM, rightM, topM, bottomM; // margins
string header, footer;
int textColor;

};

- How many pages should we allow the user of Stanford Word*?

W

Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page class, instead):

struct Page {
string text;
double leftM, rightM, topM, bottomM; // margins
string header, footer;
int textColor;

};

- How many pages should we allow the user of Stanford Word? 57?

W

int main() {
Page pages[5]; // array of 5 pages
T

Thought experiment: the scary world without dynamic memory

- People probably wouldn't buy your program if you limited them to five pages.

nt
Stanford Word is limited to 5 pages. :l
Please upgrade to Stanford Word Pro

which allows up to 6 pages.

- Okay, let's make it bigger. How big? 6 pages”? 100 pages? 1,000,000 pages?
- This is a no-win battle.
- Too small, and your user might be unhappy.
- Too big? Waste of memory! Your program would hog memory if you did the
following:

int main() {

)

Next Time: Building a Vector class with arrays

- In the next lecture, we will discuss how the Vector is built, using dynamic
memory.
- We will need to keep track of all the details ourselves:
- How much space we have allocated for the Vector
- How many items are in the Vector
- How to add / remove / insert into the Vector
- How to expand the Vector

nt
= Thanks for using Stanford Word! :I
You can have unlimited pages!

- Dynamic Memory Allocation:

- new: Used to request heap memory that lasts for the rest of your
program, or until you don't need it anymore.

- delete: used to return memory to the operating system.
If you use new to request memory, you should delete it somewhere in
your program.

- You are not allowed to use memory that has been deleted.

- deleting memory does not somehow "delete” the pointer variable -- it
goes to the location in memory pointed to, and tells the operating system
that we are done with it.

References and Advanced Reading

* References:
enew and delete: https://www.tutorialspoint.com/cplusplus/cpp_dynamic_memory.htm

e\/ideo on dynamic memory allocation: https://www.youtube.com/watch?v=0rDjGp y1H4

* Advanced Reading:
¢ Fun video on pointers: https://www.youtube.com/watch?v=B7IVHqg-cgeU
e Morris Worm: https://en.wikipedia.org/wiki/Morris_worm
e Buffer Overflow vulnerabilities: https://en.wikipedia.org/wiki/Buffer overflow

Extra Slides (will cover next time)

Dynamic Memory Allocation: your responsibilities

With great power comes great responsibility

You have a responsibility when using dynamic memory allocation to delete anything you

have requested via new.

This is the contract you make with the operating system: if you're done with the memory, you
should return it. The OS will take it back when your program ends, but this wastes memory,

and this is called a "memory leak."

const int INIT_CAPACITY = 10000000;

class Demo {
public:
Demo(); // constructor
string at(int 1i);
private:

string *xbigArray;
b

Demo: :Demo() {
bigArray = new string[INIT_CAPACITY];
for (int i=0;i<INIT CAPACITY;i++) {

by

string Demo::at(int i) {
return bigArrayl[il;

}
int main()
{
for (int i=0;i<10000; i++){
Demo demo;
cout << i << ": " << demo.at(1234) << endl;
}
‘ return 0;
}

bigArray[i]l = "Lalalalalalalalala!";

This program crashed my entire
computer when | ran it. Why?

Dynamic Memory Allocation: your responsibilities

This program crashed my entire computer when | ran it. Why?

We're allocating a fon of memory, and not deleting it!

We can fix it by adding a "destructor” -- when the class instance goes out of scope, the
destructor is called, cleaning up the memory for us.

const int INIT_CAPACITY = 10000000;

class Demo {

public:
Demo(); // constructor
~Demo(); // destructor
string at(int 1i);

private:

| string xbigArray;

};

Demo: :Demo() {
bigArray = new string[INIT_CAPACITY];
for (int i=0;i<INIT_CAPACITY;i++) {

}

bigArray[i] = "Lalalalalalalalala!";

Demo: :~Demo() {
delete[] big_array;
}

string Demo::at(int i) {
return bigArrayl[i];

 }
int main()
{
for (int i=0;1<10000;i++){
Demo demo;
cout << i << ": " << demo.at(1234) << endl;
}
return 0;
}

