
Wednesday, November 2, 2016 

Programming Abstractions

Fall 2016

Stanford University 

Computer Science Department


Lecturer: Chris Gregg


reading:

Programming Abstractions in C++, Section 12.1

CS 106B 
Lecture 17: 
Implementing Vector

Hermit Crab 
(Pagurus bernhardus) 



Today's Topics

•Logistics 

•More information on delete 
•Destructors 
•Implementing the Vector class 
•Header File 
•Implementation 
•focus on expand()



Next Time: Building a Vector class with arrays
• In the next lecture, we will discuss how the Vector is built, using dynamic 

memory. 
• We will need to keep track of all the details ourselves: 

• How much space we have allocated for the Vector 
• How many items are in the Vector 
• How to add / remove / insert into the Vector 
• How to expand the Vector



Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) { 
    // allocate space for a new array 
    int *multiple = new int[length]; 

    for (int i=0; i < length; i++) { 
        multiple[i] = origArray[i] * 2; // double each value 
    } 

    printArray(multiple, length); // prints each value doubled 

    delete [] multiple; // give back the memory 
     
    multiple = new int[length * 2]; // now twice as many 
    for (int i=0; i < length; i++) { 
        multiple[i*2] = origArray[i] * 2; // double each value 
        multiple[i*2+1] = origArray[i] * 3; // triple the value 
    } 

    printArray(multiple, length * 2); 

    delete [] multiple; // clean up 
}



Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) { 
    // allocate space for a new array 
    int *multiple = new int[length]; 

    for (int i=0; i < length; i++) { 
        multiple[i] = origArray[i] * 2; // double each value 
    } 

    printArray(multiple, length); // prints each value doubled 

    delete [] multiple; // give back the memory 
     
    multiple = new int[length * 2]; // now twice as many 
    for (int i=0; i < length; i++) { 
        multiple[i*2] = origArray[i] * 2; // double each value 
        multiple[i*2+1] = origArray[i] * 3; // triple the value 
    } 

    printArray(multiple, length * 2); 

    delete [] multiple; // clean up 
}

• First: notice that we delete 
multiple, and then use it again! 

• Is that allowed??



Dynamic Memory Allocation: delete
• delete is sometimes confusing. Take a look at the following function:
void arrayFun(int *origArray, int length) { 
    // allocate space for a new array 
    int *multiple = new int[length]; 

    for (int i=0; i < length; i++) { 
        multiple[i] = origArray[i] * 2; // double each value 
    } 

    printArray(multiple, length); // prints each value doubled 

    delete [] multiple; // give back the memory 
     
    multiple = new int[length * 2]; // now twice as many 
    for (int i=0; i < length; i++) { 
        multiple[i*2] = origArray[i] * 2; // double each value 
        multiple[i*2+1] = origArray[i] * 3; // triple the value 
    } 

    printArray(multiple, length * 2); 

    delete [] multiple; // clean up 
}

• It is! delete does not 
delete any variables! 
Instead, it follows the 
pointer and returns the 
memory to the OS! 

• However, you are not 
allowed to use the 
memory after you have 
deleted it.  

• This does not preclude 
you from re-using the 
pointer itself.

• First: notice that we delete 
multiple, and then use it again! 

• Is that allowed??



Dynamic Memory Allocation: delete
• What does this print out, by the way for an origArray = {1, 5, 7}?
void arrayFun(int *origArray, int length) { 
    // allocate space for a new array 
    int *multiple = new int[length]; 

    for (int i=0; i < length; i++) { 
        multiple[i] = origArray[i] * 2; // double each value 
    } 

    printArray(multiple, length); // prints each value doubled 

    delete [] multiple; // give back the memory 
     
    multiple = new int[length * 2]; // now twice as many 
    for (int i=0; i < length; i++) { 
        multiple[i*2] = origArray[i] * 2; // double each value 
        multiple[i*2+1] = origArray[i] * 3; // triple the value 
    } 

    printArray(multiple, length * 2); 

    delete [] multiple; // clean up 
}

void printArray(int *array,  
                int length) { 
    cout << "["; 
    for (int i=0; i < length; i++) { 
        cout << array[i]; 
        if (i < length-1) { 
            cout << ", "; 
        } 
    } 
    cout << "]" << endl; 
}

Output: 
[2, 10, 14] 
[2, 3, 10, 15, 7, 21]



Dynamic Memory Allocation: your responsibilities
• With great power comes great responsibility 
• You have a responsibility when using dynamic memory allocation to delete anything you 

have requested via new. 
• This is the contract you make with the operating system: if you're done with the memory, you 

should return it. The OS will take it back when your program ends, but this wastes memory, 
and this is called a "memory leak."

const int INIT_CAPACITY = 10000000; 

class Demo { 
public: 
    Demo(); // constructor 
    string at(int i); 
private: 
    string *bigArray; 
}; 

Demo::Demo() { 
    bigArray = new string[INIT_CAPACITY]; 
    for (int i=0;i<INIT_CAPACITY;i++) { 
        bigArray[i] = "Lalalalalalalalala!"; 
    } 
}

string Demo::at(int i) { 
    return bigArray[i]; 
} 

int main() 
{ 
    for (int i=0;i<10000;i++){ 
        Demo demo; 
        cout << i << ": " << demo.at(1234) << endl; 
    } 
    return 0; 
}

This program crashed my entire 
computer when I ran it. Why?



Dynamic Memory Allocation: your responsibilities
• This program crashed my entire computer when I ran it. Why? 
• We're allocating a ton of memory, and not deleting it! 
• We can fix it by adding a "destructor" -- when the class instance goes out of scope, the 

destructor is called, cleaning up the memory for us.

const int INIT_CAPACITY = 10000000; 

class Demo { 
public: 
    Demo(); // constructor 
    ~Demo(); // destructor 
    string at(int i); 
private: 
    string *bigArray; 
}; 

Demo::Demo() { 
    bigArray = new string[INIT_CAPACITY]; 
    for (int i=0;i<INIT_CAPACITY;i++) { 
        bigArray[i] = "Lalalalalalalalala!"; 
    } 
}

Demo::~Demo() { 
    delete[] big_array; 
} 

string Demo::at(int i) { 
    return bigArray[i]; 
} 

int main() 
{ 
    for (int i=0;i<10000;i++){ 
        Demo demo; 
        cout << i << ": " << demo.at(1234) << endl; 
    } 
    return 0; 
}



The VectorInt Class: Implementation

• In order to demonstrate how useful (and 
necessary) dynamic memory is, let's 
implement a Vector that has the following 
properties: 
• It can hold ints (unfortunately, it is 

beyond the scope of this class to create 
a Vector that can hold any type) 

• It has useful Vector functions: add(), 
insert(), get(), remove(), 
isEmpty(), size(), << overload 

• We can add as many elements as we 
would like 

• It cleans up its own memory



Dynamic Memory Allocation: your responsibilities

• Back to Stanford Word. 
• The problem we had initially was that Stanford Word can't 

just pick an array size for the number of pages, because it 
doesn't know how many pages you want to write. 

• But, using a dynamic array, Stanford Word can initially set 
a low number of pages (say, five), and then ... what can it 
do?



Expansion Analogy: Hermit Crabs

• Hermit Crabs 
• Hermit crabs are interesting animals. The live in scavenged 

shells that they find on the sea floor. Once in a shell, this is 
their lifestyle (with a bit of poetic license): 
• Grow a bit until the shell is outgrown. 
1.Find another shell. 
2.Move all their stuff into the other shell. 
3.Leave the old shell on the sea floor. 
4.Update their address with the Hermit Crab Post Office 
5.Update the capacity of their new shell on their web page.



Expansion Analogy: Hermit Crabs

• Dynamic Arrays 

• We can actually model what we want Microsoft Word to do 
with the array for its document by the hermit crab model. 

• In essence, when we run out of space in our array, we want 
to allocate a new array that is bigger than our old array so we 
can store the new data and keep growing. These "growable 
arrays" follow a five-step expansion that mirrors the hermit 
crab model (with poetic license). 

• One question: if we are going to expand our array, how much 
more memory do we ask for? double the amount! This is the most efficient.



Expansion Analogy: Hermit Crabs

• Dynamic Arrays 
• There are five primary steps to expanding a dynamic array: 
1.Create a new array with a new size (normally twice the size) 
2.Copy the old array elements to the new array 
3.Delete the old array (understanding what happens here is key!) 
4.Point the old array variable to the new array (it is a pointer!) 
5.Update the capacity variable for the array 

• When do we decide to expand an array? 
• When it is full. How do we know it is full? We keep track!



Expansion Analogy: Hermit Crabs

• Dynamic Arrays 
• There are five primary steps to expanding a dynamic array: 
1.Create a new array with a new size (normally twice the size) 
2.Copy the old array elements to the new array 
3.Delete the old array (understanding what happens here is key!) 
4.Point the old array variable to the new array (it is a pointer!) 
5.Update the capacity variable for the array 

• When do we decide to expand an array? 
• When it is full. How do we know it is full? We keep track!



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
1.Request space for 10 elements:

What options does the operating system have?

int *newElements = new int[capacity * 2];



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
1.Request space for 10 elements:

What options does the operating system have?

Is this an option?
No — you're 
already using 
the first five!

int *newElements = new int[capacity * 2];



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
1.Request space for 10 elements:

What options does the operating system have?

This is the 
option the OS 
has to choose.

int *newElements = new int[capacity * 2];



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
1.Request space for 10 elements: 

What options does the operating system have?

This is the 
option the OS 
has to choose.

int *newElements = new int[capacity * 2];

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2 7

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
2.Copy: 

This is the 
option the OS 
has to choose.

for (int i=0; i < count; i++) { 
    newElements[i] = elements[i]; 
}

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2 7

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
3.Delete the original elements: (you no longer have legitimate access to that 
memory!)

This is the 
option the OS 
has to choose.

delete [] elements;

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5 5 2 8 2 7

elements

55
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
4.Assign elements to the new array:

This is the 
option the OS 
has to choose.

elements = newElements;

55
0x8f

newElements



Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5 5 2 8 2 7

elements

55
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following 
diagram. capacity = 5, and count = 5 (it is full). 

• To expand, we must follow our rules: 
5.(Bookkeeping) update capacity:

This is the 
option the OS 
has to choose.

capacity *= 2;

55
0x8f

newElements



References and Advanced Reading

•References: 
•Dynamic Arrays: https://en.wikipedia.org/wiki/Dynamic_array  
•See the course website for full VectorInt code 

•Advanced Reading: 
•Vector class with templates: Read textbook, Section 14.4


