
Wednesday, September 28, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapters 2-3

CS 106B
Lecture 2: C++ Functions

parameters

function

result

Today's Topics
• Logistics:

• Signing up for section
• CS 106L
• Qt Creator installation help on Thursday
• Stanford Local Programming Contest: Saturday

• Homework 1: Fauxtoshop!
• Due Friday, October 7, at Noon
• A note on the honor code and cheating
• YEAH Hours tonight! (will be recorded!)

• Functions
• Some review — functions are very similar to Java functions!
• Value semantics
• Reference semantics

• Reading Assignment: Chapters 2 and 3

Logistics
•Signing up for section: you must put your available times by Sunday
October 2 at 5pm (opens Thursday at 5pm).
•Go to cs198.stanford.edu to sign up.

•CS 106L: A great opportunity to dig a bit deeper into "real" C++, and to see
interesting programming examples. Meets Tu/Th 1:30-2:50 in Hewlett 101.

•Qt Creator installation help: Thursday at 8pm, in Tressider (eating area).
Please attempt to install Qt Creator before you arrive (see the course website
for details).
•Remember, Assignment 0 is due Friday at Noon

•Stanford Local Programming Championship: Saturday:
cs.stanford.edu/group/acm/SLPC/

Assignment 1: Fauxtoshop!

Scatter!

Click for Intro Video!

Assignment 1: Fauxtoshop!

Edge Detection!

Assignment 1: Fauxtoshop!

Green Screen Merging!

Assignment 1: Fauxtoshop!

Compare Images!

?

Fauxtoshop
•The program you write will utilize:
•Functions
•Constants
•Loops
•I/O (cout, getLine(), getInteger())
•Reference semantics, Value semantics
•Strings
•Logic
•Nicholas Cage

•We will discuss all of the above before the project is due
•Get started early! (Idea: finish Scatter by Friday!)
•Go to YEAH hours! Go to the LaIR!
•This is a non-pair programming program — you must work independently
•Due: 12pm (Noon) on Friday, October 7

Fauxtoshop

•A comment on the Honor Code (handout)

Defining Functions (2.3)
A C++ function is like a Java method. Similar declaration syntax but
without the public or private keyword in front.

type functionName(type name, type name, ..., type name) {
 statement;
 statement;
 ...
 statement;
 return expression; // if return type is not void
}

return type parameters

Calling a function:
functionName(value, value, ..., value);

arguments (called in the same order as the parameters)

Function Return Types
A C++ function must have a return type, which can be any time (including
user-defined types, which we will cover later).

double square(double x); // returns a double
Vector<int> matrixMath(int x, int y); // returns a Vector
 // probably not a good
 // idea! (covered later)
string lowercase(string s); // returns a string (maybe
 // not a good idea...
void printResult(Vector<int> &v); // returns nothing!

A C++ function can only return a single type, and if you want to return
multiple "things," you have to do it differently (unlike in languages
such as Python). We will cover this later, as well.

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)

Function Example: Output
99 bottles of Coke on the wall.
99 bottles of Coke.
Take one down, pass it around, 98 bottles of Coke on the wall.

98 bottles of Coke on the wall.
98 bottles of Coke.
Take one down, pass it around, 97 bottles of Coke on the wall.

97 bottles of Coke on the wall.
97 bottles of Coke.
Take one down, pass it around, 96 bottles of Coke on the wall.

...

3 bottles of Coke on the wall.
3 bottles of Coke.
Take one down, pass it around, 2 bottles of Coke on the wall.

2 bottles of Coke on the wall.
2 bottles of Coke.
Take one down, pass it around, 1 bottles of Coke on the wall.

1 bottles of Coke on the wall.
1 bottles of Coke.
Take one down, pass it around, 0 bottles of Coke on the wall.

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)

How many functions does this program have?

What does the bottles() function return?

Answer: 2. bottles() and main()

Answer: nothing (void function)

Function Example, brought to you by
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

(bus drivers hate them!)
Why is it a good idea to make DRINK_TYPE a constant?

Answer: So we can change it to Pepsi if we are
masochists. (actual answer: it allows us to make
one change that affects many places in the code)

Function Example 2
// Function example #2: returning values

#include <iostream>
#include "console.h"

using namespace std;

int larger(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

// Returns the larger of the two values.
int main() {
 int bigger1 = larger(17, 42); // call the function
 int bigger2 = larger(29, -3); // call the function again
 int biggest = larger(bigger1, bigger2);
 cout << "The biggest is " << biggest << "!!" << endl;
 return 0;
}

Function Example 2
// Function example #2: returning values

#include <iostream>
#include "console.h"

using namespace std;

int larger(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

// Returns the larger of the two values.
int main() {
 int bigger1 = larger(17, 42); // call the function
 int bigger2 = larger(29, -3); // call the function again
 int biggest = larger(bigger1, bigger2);
 cout << "The biggest is " << biggest << "!!" << endl;
 return 0;
}

Output:

Function Example 2: Debugging
•One of the most powerful features of an Integrated Development Environment
(IDE) like Qt Creator is the built-in debugger.

•You can stop the program's execution at any point and look at exactly what is
going on under the covers!

•In your program, click to the left of a line of code (line 18 below, for example)

•When you run the program in Debug mode (the green triangle with the bug on it),
the program will stop at that point. Let's see this in action!

Function Example 2: Debugging
•Notes from live debugging:
•You can see variable values as the program executes
•You use the following buttons to continue the program:

continue
to next

breakpoint

stop
running

Go to next
line but not

into functions

Go to next
line and

into
functions

Finish the
function

and leave
it

•Debugging effectively takes a little time to learn, but is super effective if you
have hard to find bugs.

Declaration Order
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}

// Function Definition and Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

•Believe it or not, this program does not compile!
•In C++, functions must be declared somewhere
before they are used.

•But, we like to put our main() function first, because
it is better style.

Declaration Order
#include <iostream>
#include "console.h"

using namespace std;

const string DRINK_TYPE = "Coke";

// Function Definition
void bottles(int count);

int main() {
 for (int i=99; i > 0; i--) {
 bottles(i);
 }
 return 0;
}
// Function Code
void bottles(int count) {
 cout << count << " bottles of " << DRINK_TYPE << " on the wall." << endl;
 cout << count << " bottles of " << DRINK_TYPE << "." << endl;
 cout << "Take one down, pass it around, "
 << (count-1) << " bottles of " << DRINK_TYPE
 << " on the wall." << endl << endl;
}

•Believe it or not, this program does not compile!
•In C++, functions must be declared somewhere
before they are used.

•But, we like to put our main() function first, because
it is better style.

•What we can do is define the function (called a
"function prototype") without its body, and that tells
the compiler about the function "signature" and the
compiler is happy.

C++ Pre-written Functions
•You have written a lot of functions before. What if we
wanted to find the square root of a number?

•We could manually write out a function (remember
Newton’s Method??) -- see the textbook!

•But, this would be counterproductive, and many math
functions have already been coded (and coded well!)

•The <cmath> library already has lots and lots of math
functions that you can use (you can go look up the code!
Actually...it's complicated -- see https://goo.gl/Y9Y55w if
you are brave. It is most likely true that the square root
function is built into your computer's processor, so there
isn't any readable code)

<cmath> functions (2.1)
#include <cmath>

Function Description (returns)
abs(value) absolute value
ceil(value) rounds up
floor(value) rounds down
log10(value) logarithm, base 10

max(value1, value2) larger of two values
min(value1, value2) smaller of two values

pow(base, exp) base to the exp power
round(value) nearest whole number
sqrt(value) square root
sin(value)

cos(value)

tan(value)

sine/cosine/tangent of an
angle in radians

•unlike in Java, you don't write Math. in front of the function name
•see Stanford "gmath.h" library for additional math functionality

Value semantics
•value semantics: In Java and C++, when variables (int, double) are
passed as parameters, their values are copied.
•Modifying the parameter will not affect the variable passed in.

void grow(int age) {
 age = age + 1;
 cout << "grow age is " << age << endl;
}

int main() {
 int age = 20;
 cout << "main age is " << age << endl;
 grow(age);
 cout << "main age is " << age << endl;
 return 0;
}

Output:
main age is 20
grow age is 21
main age is 20

Reference semantics (2.5)
•reference semantics: In C++, if you declare a parameter with an & after its
type, instead of passing a copy of its value, it will link the caller and callee
functions to the same variable in memory.
•Modifying the parameter will affect the variable passed in.
void grow(int &age) {
 age = age + 1;
 cout << "grow age is " << age << endl;
}

int main() {
 int age = 20;
 cout << "main age is " << age << endl;
 grow(age);
 cout << "main age is " << age << endl;
 return 0;
}

Output:
main age is 20
grow age is 21
main age is 21

Reference semantics (2.5)
•Notes about references:
•References are super important when dealing with objects that have a lot of
elements (Vectors, for instance). Because the reference does not copy the
structure, it is fast. You don't want to transfer millions of elements between
two functions if you can help it!

•The reference syntax can be confusing, as the "&" (ampersand) character is
also used to specify the address of a variable or object. The & is only used
as a reference parameter in the function declaration, not when you call the
function:

void grow(int &age) {
 age = age + 1;
 cout << "grow age is "
 << age << endl;
}

yes!
int main() {
 grow(age);

 grow(&age);

 return 0;
}

yes!

no!

Reference pros/cons

•benefits of reference parameters:
•a useful way to be able to 'return' more than one value
•often used with objects, to avoid making bulky copies when passing

•downsides of reference parameters:
•hard to tell from call whether it is ref; can't tell if it will be changed
 foo(a, b, c); // will foo change a, b, or c? :-/
•(very) slightly slower than value parameters
•can't pass a literal value to a ref parameter
 grow(39); // error

Reference Example

•Without references, you can't write a swap function to swap two integers. This is
true about Java. What happens with the following function?

/*
 * Attempts to place a's value into b and vice versa.
 */
void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
}

•Answer: the original variables are unchanged, because they are passed as copies
(values)!

Reference Example

•With references, you can write a swap function to swap two integers, because you
can access the original variables:

/*
 * Places a's value into b and vice versa.
 */
void swap(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;
}

•Answer: the original variables are changed, because they are passed as
references !

Tricky Reference Mystery Example
What is the output of this code? Talk to your neighbor!

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

Tricky Reference Mystery Example
What is the output of this code?

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

Quadratic Exercise -- how do you return multiple things?

•A quadratic equation for variable x is one of the form:
 ax2 + bx +c = 0, for some numbers a, b, and c.

•The two roots of a quadratic equation can be found using
the quadratic formula at right.

•Example: The roots of x2-3x-4=0 are x=4 and x=-1

•How would we write a function named quadratic to solve quadratic equations?
•What parameters should it accept?
•Which parameters should be passed by value, and which by reference?

•What, if anything, should it return?

•We have choices!

Quadratic Exercise -- how do you return multiple things?

/*
 * Solves a quadratic equation ax^2 + bx + c = 0,
 * storing the results in output parameters root1 and root2.
 * Assumes that the given equation has two real roots.
 */
void quadratic(double a, double b, double c,
 double& root1, double& root2) {
 double d = sqrt(b * b - 4 * a * c);
 root1 = (-b + d) / (2 * a);
 root2 = (-b - d) / (2 * a);
}

•How are we "returning" the results? Answer: by reference
•What other choices could we have made? Talk to your neighbor!

Quadratic Exercise -- how do you return multiple things?
•Possible choices:
•We could have returned a boolean if the roots were imaginary
•We could have added extra parameters to support some form of
imaginary numbers

•We could have called an error function inside this function (but that is not
always a good idea -- functions like this should generally have an
interface through the parameters and/or return value, and should
gracefully fail)

•We could have re-written the function as two functions that
return either the positive or negative root, without using
references.

•We could have returned a Vector<double> object (tricky syntax!)

Recap
•Fauxtoshop is out — start early!
•There are plenty of opportunities to get help before the deadline next Friday!
•Functions are to C++ as methods are to Java (and very, very similar)
•The Qt Creator debugger can show you real-time details of what your
program is doing, and it will come in super handy when you are trying to find
tricky bugs in your code.

•You must declare function prototypes before using them in C++!
•There are lots of pre-written functions (e.g., <cmath> and the Stanford
Library functions) that have been written already. Use them!

•Value semantics: pass by "value" means that you get a copy of a variable,
not the original!

•Reference semantics: using the & in a parameter definition will give the
function access to the original variable. This can be tricky until you get used
to it.

References and Advanced Reading
•References (in general, not the C++ references!):
•Textbook Chapters 2 and 3
•<cmath> functions: http://en.cppreference.com/w/cpp/header/cmath
•Obfuscated C contest: http://www.ioccc.org
•Code from class: see class website (https://cs106b.stanford.edu)

•Advanced Reading:
•Wikipedia article on C++ References: https://en.wikipedia.org/wiki/
Reference_(C%2B%2B)

•More information on C++ references: http://www.learncpp.com/cpp-tutorial/611-
references/

•C++ Newton's Method question on StackOverflow: http://
codereview.stackexchange.com/questions/43456/square-root-approximation-with-
newtons-method

•If you are super-brave, look at the square root C++ function in the C library: http://
osxr.org:8080/glibc/source/sysdeps/ieee754/dbl-64/e_sqrt.c?v=glibc-2.14#0048

