Cs 1068

Lecture 27: A* Heuristics and
Minimum Spanning Trees

Friday, December 2, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, pp. 820-821

Today's Topics

| Ogistics
¢\Ve updated the Trailblazer alternate route description on the handout.

¢ [ypedef definition
eReal Graph: Internet routers and traceroute
eMore on Trailblazer
e A* Heuristics
eheuristic bounds, and why we want to underestimate
eMinimum Spanning Trees
e Kruskal's algorithm
eDijkstra and negative weights (extra slides)

C++: typedef

In Assignment 7, you will use a Vector<vertex *> type for all your paths.
Because paths are used so often in the assignment, we have defined a type
called Path, which is simply a Vector<vVertex *>. T0 define a new type in
C++, you can use the typedef keyword, as follows:

typedef Vector<Vertex *> Path;

Now, you can use Path as any other variable, and it IS just a Vector<Vertex *>!

Path p;
if (p.size() > 0) {
Vertex *v = p[0];
}
for (Vertex *v : p) {
cout << "Next wvertex name: " << v->name << endl;

}

Real Graphs!

There was a Tiny Feedback from the last lecture that said,

%|/\ould love more stories about when you two use these different search
algorithms more in real life.*®

On Monday we played the "Wikipedia Get to Philosophy" game with the Internet,
which have web pages with links that form a graph. Let's see another example
of how the Internet is a real graph in a completely different way: Routers

How does a message get sent from your computer to
another computer on the Internet, say in Australia?

The Internet: Computers connected through routers

your computer

computer in Australia

The Internet: Computers connected through routers

your computer

B et

computer in Australia

The Internet: Let's simplify a bit

your computer

The destination computer has a
name and an IP address, like

WWW.engineering.unsw.edu. au
IP address: 149.171.158.109

The first number denotes the
"network address” and routers
continually pass around
information about how many
"nops” they think it will take for
them to get to all the networks.
E.g., for router C: | router hops

computer in
Australia

HMEOQWDp
NNR I RN

The Internet: Let's simplify a bit

your computer

Each router knows its neighbors,

and it has a copy of its neighbors'

tables. So, B would have the
following tables:

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2

The Internet: Let's simplify a bit

your computer

If B wants to connect to F, it
connects through its neighbor

that reports the shortest path to F.

Which router would it choose?

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2

The Internet: Let's simplify a bit

your computer

If B wants to connect to F, it
connects through its neighbor

that reports the shortest path to F. \

Which router would it choose? D.

@
MED QWM

router hops
A —_—
B 1
A C 3
D 2
E 3
F 3
router hops
2
1
1
2
2

router

HEOQW P

Traceroute

We can use a program called "traceroute” to tell us the path

between our computer and a different computer:
traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WWW.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: CENIC

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

1l csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

3 csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms

4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms

5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms

6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms

7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
9 et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit
corporation formed in 1996 to provide high-performance, high-bandwidth networking serwces
to California universities and research institutions (source: Wikipedia) '

Traceroute: Pacificwave (Seattle)

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

D OO0 JoyUIdWPNR

PACIFIC

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms__1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
8.44.5.1) 160.124 ms 160.138 ms 160.068 ms

.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
NORTHWNEST 9.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms

2 /

g -unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
; lg Pass Internet traffic directly with other major national and international

GIGAPOP networks, including U.S. federal agencies and many Pacific Rim R&E

networks (source: http://www.pnwgp.net/services/pacific-wave-peering-
exchange/)

Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com

Traceroute: Australia

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WWW.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: University of New South Wales

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms

gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms

csmx-west-rtr-v13866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms

ombcrl-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
rldcdnexl-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
dcfwl-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
WwWw.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

161 milliseconds to get to the final computer

Plech's Research!

1S

Chr

More Real Graphs

Sy

o
&

.

SRV LS

2

Bl

Learming
Blossoms

Each edge is what a-8arming

teacher suggesteds/0SSOMS

Pink dots
are
students.

Each node
is a unique
patizl Solution
solution

Learning
Blossoms

Machine Learning Problem

‘ solution ‘

Unique

submissions ‘

Machine Learning Problem

‘\ solution /‘
o0
Q

Teacher
“Policy”

Example Student

. O
N

Student 1
¢

Example Student

‘ solution ‘,

¢S

Student 2

Example Student

‘ solution ‘
G ’

Student 1,203,403

/
@

Machine Learning Problem

‘ solution "
«-~ ®

Teacher
“Policy”

Learning
Blossoms

@ Clear

(136,471)

@ Run

3| | CDLoad

o
[
N
L)
o
E
=
% Ao
8 x
S 3
(%
g a E
°
2
<
<
g
3
I
Q
[
g
«© -
z
- ..
2 3
= =
3 S

L -
D
N
©
O
E
_l
O
)
e
O
®
af

1S

Road Map Node

Pier 3 4
Sydney G. n
Walton Square
Kokkari Estiatorio G
he Eureka Theatre
&3
) BN t1 The Slanted Door
1 Sue Bierman %
o Park % n
0 g, g
&, % = Ferry Building
| %
%
Embarcadero Center &
b
e
Hyatt Regency - O
San Francisco
By % @
3 0 %,
Q@ (o] O & VN & = Hotel Vitale
®
- S
california St 8 O a
[y
Embarcadero L /&’O
% %
) % S
S s
ine St -9
pine @\\{g/ & A
N % R
& Rincon Center = 2
\2\0

Rincon Park

Walton Square
Kokkari Estiatorio

‘he Eureka Theatre

\g sined

Embarcadero Center &

1S 1U0Jﬂ

- <0

Embarcadero &

(7))

Road Map Node

8
G
[
. A t1 The Slanted Door
Sue Bierman 5
Park S n
/'><5
%, = Ferry Building
)
%
ifo)
b
Hyatt Regency . O
San Francisco

O -
1

%

Cj\'
>
O Rincon Center = >

@
\2\0

Rincon Park

1S

Road Map Edge

Pier 3 a

Walton Square
Kokkari Estiatorio

‘he Eureka Theatre

Sue Bierman

\g sined

Embarcadero Center &

Hyatt Regency .
San Francisco

1S 1U0Jﬂ

- <0

Embarcadero &

(%)
L

4t
A t1. The Slanted Door
3
@((\ g
®<5
%, = Ferry Building
)
S
ife)
b
&

e Hotel Vitale

Cj\
Rincon Center =

@
\2\0

Rincon Park

1S

Road Map Edge

Pier 3 «a
Sydney G. n
Walton Square
Kokkari Estiatorio G
‘he Eureka Theatre
[
. BN t1 The Slanted Door
Sue Bierman 5
® Park S 0
<. S,
» (o) .
&, %, w Ferry Building
')
7
b dero C ©
Embarcadero Center &
b
e
Hyatt Regency
San Francisco

L 8

o

2

@ C O € f =~ Hotel Vitale

california St
Embarcadero. {"O@
/?1
O v
pine St \{g}
& A
S >
Rmcon Center = 2
\2\0

Rincon Park

Sydney G. n
Walton Square
Kokkari Estiatorio G
‘he Eureka Theatre
[
. BN t1 The Slanted Door
Sue Bierman 5
® Park S 0
<. S,
» (o) .
&, %, w Ferry Building
')
7
b dero C ©
Embarcadero Center &
b
e
Hyatt Regency
San Francisco
L 8
o
2
@ C O € f =~ Hotel Vitale
california St
Embarcadero. {"O@
/?1
O v
pine St \{g}
& A
S >
Rmcon Center = 2
\2\0

Road Map Edge Cost

Rincon Park

Road Map Path Cost

Sydney G.
Walton Square

0
Kokkari Estiatorio

&
‘he Eureka Theatre

&

: A t1 The Slanted Door
Sue Bierman 5
Park $

\g sined

Embarcadero Center &

= Ferry Building
S

%”o
e

b
pathCost

=12 QO

e Hotel Vitale
Embarcadero &

a
%
2

1, %
% ‘S
S %
pPine St \{_Q})
’& (S Co\,
A\ % S
S Rincon Center = &
\2\0

Rincon Park

Could Google Just Precompute?

How many nodes in google maps graph?

~ /5 million

6 x 101°

1 petasecond = 31.7 million years

Can you think of a heuristic?

G(//f or,

A
e Fara//OHES

Road Map Heuristic

Doroid

Point Reyes
National
Seashore

v

Fairfield
Petaluma (76
121 -
D
@)
Novato Vallejo goal
Oo*
O Antioch
Concord
@ Richmond
Mill Valley Walnut Creek
Berkeley 4 Mt Diablo
San Francisco @D
Daly City 5804
Pleasanton
San Mateo
@)
Altc
start;;
San Jose
Pescadero

Rio Vista

Brentwooc

Road Map Heuristic

(1_) QUIoITd P
Fairfield
Petaluma (76
121 -
2 Rio Vista
@)
Novato Vallejo goal
Point Reyes O q‘?jj
National
Seashore @ e
Concord
@ Richmond Brentwooc
Mill Valley Walnut Creek
Berkeley 4 Mt Diablo
Ga/fof’ -
Slallones San Francisco D
i
Nalv City w
Pleasanton
currNode
Mateo
N
currPath
Altc
start;;
San Jose
Pescadero

We must underestimate this time

(1_) QUIoITd P
Fairfield
Petaluma (76
121 -
2 Rio Vista
@)
Novato Vallejo goal
Point Reyes @
National
Seashore @ e
Concord
@ Richmond Brentwooc
Mill Valley / Walnut Creek
Bdrkeley 4 Mt Diablo
; /
Wfof”?@/: .
Slallones San Francisgo D
i
Nalv City w
Pleasanton
currNode (v
Mateo
N
currPath
Altc
start;;
San Jose

Pescadero

(A nla

Direct Highway

Distance on surface of
earth

Speed on fastest
highway

Heuristic =

For Trailblazer:
A Distance on surface of earth is getCrowFlyDistance ()
Speed on fastest highway is getMaxRoadSpeed ()

Distance to Landmarks

L andmark Heuristic

Distance < abs(A — B)

Best of All Heuristics

h = max(hy, ha, ..., hy)

More Detail on A*; Choice of Heuristic

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u, t)

S » t ' ---------- U ‘3

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) =

heuristic(—undereshmate
(perfect distance
(

overestimate 49

u,t)
u,t)
u,t)

)

heuristic
heuristic

More Detail on A*; Choice of Heuristic

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) =

heuristic(u,t) = undereshmate .
heuristic(u,t) = perfect distance Same as Dijkstra
heuristic(u,t) = overestimate

More Detail on A*; Choice of Heuristic

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = Will be the same or faster than
heuristic(u,t) = underes’umate Dijkstra, and will find the shortest
heuristic(u,t) = perfect distance path (this is the only "admissible"
heuristic(u,t) = overestimate heuristic for A*.

More Detail on A*; Choice of Heuristic

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) =

heuristic(u,t) = underestlmate Will only follow the best path, and
heuristic(u,t) = perfect distance will find the best path fastest (but
heuristic(u,t) = overestimate requires perfect knowledge)

More Detail on A*; Choice of Heuristic

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) =

heuristic(u,t) = undereshmate Won't necessarily find
heuristic(u,t) = perfect distance ~ shortest path (but might run
heuristic(u,t) = overestimate even faster)

Admissible Heuristic

Definition: An admissible heuristic always
underestimates the true cost.

Could you precompute this for all your vertices? Yes, but it would not be feasible.

54

Spanning Trees and Minimum Spanning Trees

Definition: A Spanning Tree (ST) of a connected undirected weighted graph G is a subgraph
of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A
Minimum Spanning Tree (MST) of G is a ST of G that has the smallest total weight among
the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

Kruskal's Algorithm to find a Minimum Spanning Tree

e Kruskal's algorithm: Finds a MIST in a given graph.

function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected to one another,
add that edge into the graph.

Otherwise, skip the edge.

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

>
>

* | |
Place all edges into a priority queue k:11
based on their weight (cost). pEmmmmREE
While the priority queue is not empty:) - ‘e, .
Dequeue an edge e from the priority queue. "9‘.‘ = ‘ofn-13 . 0:15
If e's endpoints aren't already connected, R = J:10 ".. .
add that edge into the graph. R £6 - 18 o =
Otherwise, skip the edge. Q.....;..Q....r;....
’0“ : "‘ n ’0“ n
a:l . = ec3 g7 o . b2
n * L [] .
o S e5 %, i ni4
* = ¢ = *
*] L 2 *

[:12

h:8

O
O

O""é;'zf"

pqg ={a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, |:12, m:13, n:14, 0:15, p:16, g:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

>
>

11

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

QO

While the priority queue is not empty: g e RN m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise, skip the edge.

*
EEE
@
*
*

: * ’0 |

= < . * | |

: ”5'3 87 = b:2
= e:5 ‘0’ . ’.‘n:14

- * = *

= - .

d:4 l:12 h:8
[
pqg = {a ° 1, b:2, c:3,d:4,e:5,f:6,g:7, h:8,i:9, j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

O
O

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

>
>

11

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

While the priority queue is not empty: .9 RAHERN m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise, skip the edge.

*

O—-

*

*
EEEm
@
*

=,

A L 2
De5 w1 hild

= * = *

5 - .

d:4 l:12 h:8
[]
pqg = {b .2, c:3,d:4,e:5,f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

OF
Q

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

>
>

11

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

*

While the priority queue is not empty: .9 RAHERON m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn

O

N

.
.
>
=
S

O

h:8

d:4 1:12
:3
pqg = {C. ,d:4,e:5, f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, g:17, r:18}

O—-

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

>
>

11

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

*

While the priority queue is not empty: .9 RAHERON m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn

O

N

.
.
>
=
S

e:5

d:4 Q 1:12

[]
pqg = {d .4, e:5, f:6, g:7, h:8,i:9, j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

h:8

O—-

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

>
*

q:17’0”

>
>

11

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

O

While the priority queue is not empty: .9 RAHERN m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: Yo, m
add that edge into the graph. +* 6 = r18 o, =

Otherwise,skiptheedge. EERRNRN sessmEmEn

O

.
.
>
=
S
N

h:8

O—-

d:4 Q 1:12

:5
pqg = {e e, f:6,g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

’0
*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

>
>

11

O

*

While the priority queue is not empty: . o e,
. 19 & . +,m:13
Dequeue an edge e from the priority queue. . : 10 e, 15
If e's endpoints aren't already connected, R . J: ’0.. .
A R . .
add that edge into the graph. £6 r18 *
Otherwise, skip the edge. T
*
*
*
g7 ‘0’ 2

.
.
>
=
S

O—-

e:5

d:4 Q 1:12

[
pqg = {f. 6, g:7,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

h:8

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

’0
*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

>
>

11

O

*

While the priority queue is not empty: g e RN m:13
.] * .
Dequeue an edge e from the priority queue. ’.‘0 : 10 e, 15
If e's endpoints aren't already connected, R . J: e, .
add that edge into the graph. ¢ f6 = r18 Yo =
Otherwise, skip the edge. — T
*
] *
: g7 ’Q"
: e b:2
= e .'n:ld
2 R
d:4 C l:12 h:8 O

.7
pqg = {g. ,h:8,i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

’0
*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

>
>

11

O

*

While the priority queue is not empty: . o e,
. 19 & . +,m:13
Dequeue an edge e from the priority queue. . : 10 e, 15
If e's endpoints aren't already connected, R . J: ’0.. .
A R . .
add that edge into the graph. £6 r18 *
Otherwise, skip the edge. T
*
*
*
g7 ‘0’ 2

.
.
>
=
S

>

(o]

O (
o

e:5

d:4 Q 1:12

[]
pqg = {h .8, i:9,j:10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

*

11

*

While the priority queue is not empty: RN
.. [] * m:13
Dequeue an edge e from the priority queue. : 10 e, 15
If e's endpoints a.ren't already connected, .): ‘0,. -
add that edge into the graph. £6 - r18 *y*
Otherwise, skip the edge. — T
*
*
. . ¢
g7 ‘0’ 2

e:5

d:4 Q [:12 h:8

[)
[]
pqg = {l .9, j:10, k:11, 1:112, m:13, n:14, 0:15, p:16, g:17, r:18}

O—-

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

*

q:17’0”

EEEEN
©
[y
(o)}

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

*

11

*

While the priority queue is not empty: .
L +.m:13
Dequeue an edge e from the priority queue. 10 e, 15
If e's endpoints a.ren't already connected, J: ‘0,. -
add that edge into the graph. £6 r18 *y*
Otherwise, skip the edge. — T
] *
- *
' g7 o 5
. +*n:14

O—-

d:4 Q [:12 h:8

[)
[
pqg = {J ° 10, k:11, 1:12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

*

17 o

function kruskal(graph): g R
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

*

EEEEEEERN
°
[y
(o)}

11

O

*

While the priority queue is not empty: E . m13
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, .): Yo, m
add that edge into the graph. - r18 %o
Otherwise, skip the edge. nansnsnns
*
] *
. g7 0”‘
- ¢ b:2
. +*n:14

[
pqg = {k. 1 1, [:12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*
*
17
function kruskal(graph): q:l/e
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

EEEEEEERN
°
[y
(o)}

11

O

While the priority queue is not empty: . e, m:13 -
] * .]
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, .): ‘0, -
add that edge into the graph. £6 - r18 %o
Otherwise, skip the edge. Q.........
- b:2
. * n14

[]
pqg = {I ° 12, m:13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce? Q
o
function kruskal(graph): q.lz“ E p:16
Remove all edges from the graph. Rt .
Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue. 0:15

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

r:18

pqg = {m : 13, n:14, 0:15, p:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*
117 o
function kruskal(graph): g R

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

*

EEEEEEERN
°
[y
(o)}

11

O

] L 4
- *

] ’0.m213
u *

110 . 50:15

%e

f:GQ 18

pqg = {n : 14, 0:15, p:16, g:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

O

*

117 o
function kruskal(graph): g R

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

*

EEEEEEERN
°
[y
(o)}

11

O

While the priority queue is not empty: . e, m:13
] * .
Dequeue an edge e from the priority queue. =10 ‘e, 0:15
If e's endpoints aren't already connected, .): R
add that edge into the graph. £6 - r18 %
Otherwise, skip the edge. —Q....Q....C)
: o
u . :7 *
. g ‘0” b:2
. ,'n:14
| | “

d:4 [:12 h:8 O

0q={0+ 15 0:16, q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
0“
17 & 1
function kruskal(graph): g R4 p:16
Remove all edges from the graph. Rt
Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty: . e, m:13 -
Dequeue an edge e from the priority queue. a y ".. ' E 0:15
If e's endpoints aren't already connected, - J:10 e, .
add that edge into the graph. £6 - r18 %o
Otherwise, skip the edge. —Q....;....
‘0
8:7 ‘_" 2

Ppq = {p » 16 q:17, r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue k:11
based on their weight (cost).
While the priority queue is not empty: . e, .
.. [] * m:13 L]
Dequeue an edge e from the priority queue. =10 ‘e, = 0:15
If e's endpoints aren't already connected, .): Yo, m
add that edge into the graph. £6 - r18 %o
Otherwise, skip the edge. —Q.........
*
. . "“
‘_’ b:2

d:4 [:12 h:8 O

pg = {q : 17, r:18}

Kruskal Example

in the graph below? What MST would it produce?

function kruskal(graph): .
Remove all edges from the graph. K

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

e In what order would Kruskal's algorithm visit the edges T
p

: | : b
d:4 [:12 h:8 O

pq={r:18}

Kruskal Example

e In what order would Kruskal's algorithm visit the edges
in the graph below? What MST would it produce?
q:17 p:16
function kruskal(graph):

Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue. j:10 0:15
If e's endpoints aren't already connected, £6 18
add that edge into the graph. ' O r.
Otherwise, skip the edge.
g:7 b2

d:4 O [:12 h:8 O

pq = {}

Kruskal Example

e Kruskal's algorithm would output the following MST: O
- {al bl CI dl fl hl il kl p}
p:16
e The MST's total cost is: 11
1+2+3+4+6+8+9+11+16 = 60 O O
i:9
O—0O O
a:1 c:3 b:2
OO 0,40

e What data structures should we use to implement this algorithm?

function kruskal(graph):
Remove all edges from the graph.

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:
Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected,
add that edge into the graph.

Otherwise, skip the edge.

e Need some way to identify which vertexes are "connected" to which
other ones

— we call these "clusters" of vertices
e Also need an efficient way ‘ ‘ ‘ @ (4)
(3)
to figure out which cluster
a given vertex is in. ‘

e Also need to merge clusters
when adding an edge.

79

References and Advanced Reading

- References:
e A* Heuristics: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
eMinimum Spanning Tree visualization: https://visualgo.net/mst
eKruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's_algorithm

* Advanced Reading:
eHow Internet Routing works: https://web.stanford.edu/class/msande91si/www-sprO4/readings/
week1/Internet\Whitepaper.htm
ehttp://www.explainthatstuff.com/internet.htm!

%,
O
O
)
M®
e
x
LLI

43
45 vy P v 51

2 4
43

\
| 4
/

V3 V4

4

&

Vo | /7
42

s
.

46 47

