CS 106B
 Lecture 27: A* Heuristics and Minimum Spanning Trees

Friday, December 2, 2016

Programming Abstractions Fall 2016
Stanford University
Computer Science Department
Lecturer: Chris Gregg
reading:
Programming Abstractions in C++, pp. 820-821

Today's Topics

- Logistics
- We updated the Trailblazer alternate route description on the handout.
-Typedef definition
-Real Graph: Internet routers and traceroute
- More on Trailblazer
- A* Heuristics
- heuristic bounds, and why we want to underestimate
- Minimum Spanning Trees
- Kruskal's algorithm
-Dijkstra and negative weights (extra slides)

C++: typedef

In Assignment 7, you will use a vector<Vertex *> type for all your paths. Because paths are used so often in the assignment, we have defined a type called Path, which is simply a vector<Vertex *>. To define a new type in $\mathrm{C}++$, you can use the typedef keyword, as follows:

typedef Vector<Vertex *> Path;

Now, you can use Path as any other variable, and it is just a vector<vertex *>:
Path p;
if (p.size() > 0) \{ Vertex *v $=p[0]$;
\}
for (Vertex *v : p) \{ cout << "Next vertex name: " << v->name << endl; \}

Real Graphs!

There was a Tiny Feedback from the last lecture that said,
©Would love more stories about when you two use these different search algorithms more in real life. 9

On Monday we played the "Wikipedia Get to Philosophy" game with the Internet, which have web pages with links that form a graph. Let's see another example of how the Internet is a real graph in a completely different way: Routers

How does a message get sent from your computer to another computer on the Internet, say in Australia?

The Internet: Computers connected through routers

computer in Australia

The Internet: Computers connected through routers

computer in Australia

The Internet: Let's simplify a bit

The destination computer has a name and an IP address, like this:
www.engineering.unsw.edu.au IP address: 149.171.158.109
The first number denotes the "network address" and routers continually pass around information about how many "hops" they think it will take for them to get to all the networks. E.g., for router c:

router	hops
A	2
B	1
C	-
D	1
E	2
F	2

Australia

The Internet: Let's simplify a bit

Each router knows its neighbors, and it has a copy of its neighbors' tables. So, B would have the following tables:

A	router	hops
	A	-
	B	1
	C	3
	D	2
	E	3
	F	3

C | router | hops |
| :---: | :---: |
| A | 2 |
| B | 1 |
| C | - |
| D | 1 |
| E | 2 |
| F | 2 |

D	router	hops
	A	2
	B	1
	C	1
	D	-
	E	1
	F	1

The Internet: Let's simplify a bit

If B wants to connect to F , it connects through its neighbor that reports the shortest path to F. Which router would it choose?

A	router	hops
	A	-
	B	1
	C	3
	D	2
	E	3
	F	3

C | router | hops |
| :---: | :---: |
| A | 2 |
| B | 1 |
| C | - |
| D | 1 |
| E | 2 |
| F | 2 |

D

router	hops
A	2
B	1
C	1
D	-
E	1
F	1

The Internet: Let's simplify a bit

If B wants to connect to F , it connects through its neighbor that reports the shortest path to F. Which router would it choose? D.

A

router	hops
A	-
B	1
C	3
D	2
E	3
F	3

Traceroute

We can use a program called "traceroute" to tell us the path between our computer and a different computer: traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    g gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```


Traceroute: CENIC

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    rldcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit corporation formed in 1996 to provide high-performance, high-bandwidth networking services to California universities and research institutions (source: Wikipedia)

Traceroute: Pacificwave (Seattle)

GIGAPOP

Pass Internet traffic directly with other major national and international networks, including U.S. federal agencies and many Pacific Rim R\&E networks (source: http://www.pnwgp.net/services/pacific-wave-peeringexchange/)

Traceroute: Oregon to Australia - underwater!

Traceroute: Australia

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 rldcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```


Traceroute: University of New South Wales

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
    csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
    gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
    csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
    dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
    dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
    hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
    aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
    et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
    et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
    138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
    ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
    r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
    dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
    www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms
```

161 milliseconds to get to the final computer

More Real Graphs: Chris Piech's Research!

Machine Learning Problem

Machine Learning Problem

Teacher "Policy"

solution

Example Student

solution

Student 1

Example Student

Student 2

Example Student

solution

Student 1,203,403

Machine Learning Problem

Teacher
"Policy"
solution

Back to Traillblazer

Road Map Node

Road Map Node

Road Map Edge

Road Map Edge

Road Map Edge Cost

Road Map Path Cost

Could Google Just Precompute?

How many nodes in google maps graph?
~ 75 million

6×10^{15}

1 petasecond = 31.7 million years

Can you think of a heuristic?

Road Map Heuristic

Road Map Heuristic

We must underestimate this time

Direct Highway

Heuristic $=\frac{$\begin{tabular}{c}
Distance on surface of

earth

}{

Speed on fastest

highway
\end{tabular}}

Distance to Landmarks

Landmark Heuristic

Distance < abs(A - B)

Best of All Heuristics

$$
h=\max \left(h_{1}, h_{2}, \ldots, h_{n}\right)
$$

More Detail on A^{*} : Choice of Heuristic

priority(u) = distance(s, $u)+$ heuristic($u, t)$

We want to underestimate the cost of our heuristic, by why? Let's look at the bounds of our choices:
heuristic $(u, t)=0$
heuristic $(u, t)=$ underestimate
heuristic $(u, t)=$ perfect distance
heuristic($u, t)=$ overestimate

More Detail on A^{*} : Choice of Heuristic

priority(u) = distance(s, $u)+$ heuristic($u, t)$

We want to underestimate the cost of our heuristic, by why? Let's look at the bounds of our choices:
heuristic $(u, t)=0$
heuristic $(u, t)=$ underestimate
heuristic(u,t) $=$ perfect distance
Same as Dijkstra
heuristic $(u, t)=$ overestimate

More Detail on A^{*} : Choice of Heuristic

$$
\text { priority }(u)=\operatorname{distance}(s, u)+\text { heuristic }(u, t)
$$

We want to underestimate the cost of our heuristic, by why? Let's look at the bounds of our choices:
heuristic $(u, t)=0$
heuristic $(u, t)=$ underestimate
heuristic(u,t) = perfect distance
heuristic($u, t)=$ overestimate

Will be the same or faster than Dijkstra, and will find the shortest path (this is the only "admissible" heuristic for A^{*}.

More Detail on A^{*} : Choice of Heuristic

$$
\text { priority }(u)=\operatorname{distance}(s, u)+\text { heuristic }(u, t)
$$

We want to underestimate the cost of our heuristic, by why? Let's look at the bounds of our choices:
heuristic $(u, t)=0$
heuristic $(u, t)=$ underestimate
heuristic $(u, t)=$ perfect distance
heuristic $(u, t)=$ overestimate

Will only follow the best path, and will find the best path fastest (but requires perfect knowledge)

More Detail on A^{*} : Choice of Heuristic

priority $(u)=$ distance(s, $u)+$ heuristic($u, t)$

We want to underestimate the cost of our heuristic, by why? Let's look at the bounds of our choices:
heuristic $(u, t)=0$
heuristic $(u, t)=$ underestimate
heuristic $(u, t)=$ perfect distance
heuristic $(u, t)=$ overestimate

Won't necessarily find shortest path (but might run even faster)

Admissible Heuristic

Definition: An admissible heuristic always underestimates the true cost.

Could you precompute this for all your vertices? Yes, but it would not be feasible.

Spanning Trees and Minimum Spanning Trees

Definition: A Spanning Tree (ST) of a connected undirected weighted graph \mathbf{G} is a subgraph of \mathbf{G} that is a tree and connects (spans) all vertices of \mathbf{G}. A graph \mathbf{G} can have multiple STs. A Minimum Spanning Tree (MST) of \mathbf{G} is a ST of \mathbf{G} that has the smallest total weight among the various STs. A graph \mathbf{G} can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

Kruskal's Algorithm to find a Minimum Spanning Tree

- Kruskal's algorithm: Finds a MST in a given graph.
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected to one another, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{a: 1, b: 2, c: 3, d: 4, e: 5, f: 6, g: 7, h: 8, i: 9, j: 10, k: 11, \mathrm{l}: 12, m: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
${ }_{\mathrm{pq}}=\mathbf{b}: \mathbf{2}$

$p q=\{$ •2, $\mathrm{c}: 3, \mathrm{~d}: 4, \mathrm{e}: 5, \mathrm{f}: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{\mathbf{C} \cdot \mathbf{3}, \mathrm{d}: 4, \mathrm{e}: 5, \mathrm{f}: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{: 5, f: 6, \mathrm{~g}: 7, \mathrm{~h}: 8, \mathrm{i}: 9, \mathrm{j}: 10, \mathrm{k}: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

f:6
$g: 7, h: 8, i: 9, j: 10, k: 11, \mathrm{l}: 12, \mathrm{~m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
$p q=\{$:8, $i: 9, j: 10, k: 11, \mathrm{l}: 12, m: 13, n: 14, o: 15, p: 16, q: 17, r: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
$p q=\{!\mathbf{~} \mathbf{T}, \mathrm{m}: 13, \mathrm{n}: 14, \mathrm{o}: 15, \mathrm{p}: 16, \mathrm{q}: 17, \mathrm{r}: 18\}$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$$
{ }_{\mathrm{pq}=} \mathbf{q}: \mathbf{1 7},{ }_{\mathrm{r}, 18}
$$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):

Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$$
\mathrm{pq}=\mathbf{r}: \mathbf{1 8}
$$

Kruskal Example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.

$p q=\{ \}$

Kruskal Example

- Kruskal's algorithm would output the following MST:
$-\{a, b, c, d, f, h, i, k, p\}$
- The MST's total cost is:
$1+2+3+4+6+8+9+11+16=60$

- What data structures should we use to implement this algorithm?
function kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
Dequeue an edge e from the priority queue.
If e 's endpoints aren't already connected, add that edge into the graph.
Otherwise, skip the edge.
- Need some way to identify which vertexes are "connected" to which other ones
- we call these "clusters" of vertices
- Also need an efficient way to figure out which cluster a given vertex is in.

(c)
- Also need to merge clusters when adding an edge.

References and Advanced Reading

- References:

- A* Heuristics: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
-Minimum Spanning Tree visualization: https://visualgo.net/mst
-Kruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's_algorithm

- Advanced Reading:

-How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/ week1/InternetWhitepaper.htm
-http://www.explainthatstuff.com/internet.html

Extra Slides

Dijkstra and negative edge costs.
Dijkstra fails with negative edge
 costs. Once a vertex is declared known (say, v4), it is possible from some other unknown vertex to create a shorter path to the vertex (say, by eventually looking at $\mathrm{v}_{7} \rightarrow \mathrm{v}_{4}$).

Is there an easy solution?

Dijkstra and negative edge costs.
Is there an easy solution?

A naïve approach might be to add a delta (in this case, 41) to all paths, and then apply Dijkstra's algorithm, but this fails because paths with many edges become more weighty than paths with few edges.

Dijkstra and negative edge costs.
Is there an easy solution?

A naïve approach might be to add a delta (in this case, 41) to all paths, and then apply Dijkstra's algorithm, but this fails because paths with many edges become more weighty than paths with few edges.

Dijkstra and negative edge costs.
So, there isn't a particularly easy
 solution. However, we can solve the problem with a combination of the weighted and unweighted algorithms, but at a drastically increased running time cost.

Dijkstra and negative edge costs.
We have to forget about the idea of
 "known" vertices, since we will have to be able to change our mind if necessary (the greedy algorithm doesn't work properly).

Dijkstra and negative edge costs.

Idea:

1. Place s on a queue
2. At each stage, dequeue a vertex, v. Then, find all vertices, w, adjacent to v, such that: $d_{w}>d_{v}+\operatorname{cost}_{v, w}$
3. Update d_{w} and place w on the queue if it isn't already there (set a boolean to indicate presence in the queue)
4. Repeat until the queue is empty.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
v_{1}	Yes	0	0
v_{2}	No	INF	0
v_{3}	No	INF	0
v_{4}	No	INF	0
v_{5}	No	INF	0
v_{6}	No	INF	0
v_{7}	No	INF	0

queue

v_{1}					

Dequeue v_{1} and check weights for V_{2} and v_{4}. Update and place in queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
v_{1}	No	0	0
v_{2}	Yes	2	v_{1}
v_{3}	No	INF	0
v_{4}	Yes	1	v_{1}
v_{5}	No	INF	0
v_{6}	No	INF	0
v_{7}	No	INF	0

queue

V_{2}	V 4				

Dequeue v_{2} and check weights for V_{4} and V_{5}. Update and place in queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
V_{1}	No	0	0
$\mathrm{~V}_{2}$	No	2	$\mathrm{~V}_{1}$
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	Yes	1	$\mathrm{~V}_{1}$
$\mathrm{~V}_{5}$	Yes	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	No	INF	0
$\mathrm{~V}_{7}$	No	INF	0

queue

V_{4}	$\mathrm{~V}_{5}$				

Dequeue v_{4} and check weight for V. $_{6}$. Update and place in queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
V_{1}	No	0	0
$\mathrm{~V}_{2}$	No	2	$\mathrm{~V}_{1}$
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	No	1	$\mathrm{~V}_{1}$
$\mathrm{~V}_{5}$	Yes	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	Yes	9	$\mathrm{~V}_{4}$
$\mathrm{~V}_{7}$	No	INF	0

queue

V_{5}	$\mathrm{~V}_{6}$				

Dequeue v_{5} and check weights for v_{4} and v_{7}. Update and place in queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
v_{1}	No	0	0
$\mathrm{~V}_{2}$	No	2	v_{1}
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	No	1	v_{1}
$\mathrm{~V}_{5}$	No	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	Yes	9	$\mathrm{~V}_{4}$
$\mathrm{~V}_{7}$	Yes	18	$\mathrm{~V}_{5}$

queue

V_{6}	$\mathrm{~V}_{7}$				

Dequeue v_{6} and there aren't any weights to check (v6 doesn't have any out-going edges).

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
V_{1}	No	0	0
v_{2}	No	2	v_{1}
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	No	1	v_{7}
$\mathrm{~V}_{5}$	No	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	No	9	$\mathrm{~V}_{4}$
$\mathrm{~V}_{7}$	Yes	18	$\mathrm{~V}_{5}$

queue

V_{7}					

Dequeue v_{7} and check weights for v_{4} and v_{6}. V_{4} will get updated and placed back in the queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
v_{1}	No	0	0
v_{2}	No	2	v_{1}
v_{3}	No	INF	0
v_{4}	Yes	-22	v_{7}
v_{5}	No	12	v_{2}
v_{6}	No	9	v_{4}
v_{7}	No	18	v_{5}

V_{4}					

Dequeue v_{4} and check weight for v6. V6 will get updated and placed back in the queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
v_{1}	No	0	0
v_{2}	No	2	v_{1}
$\mathrm{~V}_{3}$	No	INF	0
v_{4}	No	-22	v_{7}
v_{5}	No	12	v_{2}
v_{6}	Yes	-14	v_{4}
$\mathrm{~V}_{7}$	No	18	$\mathrm{~V}_{5}$

queue

V_{6}					

Finally, Dequeue v6. There aren't any vertices to check (no out-going edges from V_{6}), and that will empty the queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
V_{1}	No	0	0
$\mathrm{~V}_{2}$	No	2	$\mathrm{~V}_{1}$
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	No	-22	$\mathrm{~V}_{7}$
$\mathrm{~V}_{5}$	No	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	No	-14	$\mathrm{~V}_{4}$
$\mathrm{~V}_{7}$	No	18	$\mathrm{~V}_{5}$

Finally, Dequeue v6. There aren't any vertices to check (no out-going edges from V_{6}), and that will empty the queue.

Dijkstra and negative edge costs.

\mathbf{v}	in queue?	$\mathbf{d}_{\mathbf{v}}$	$\mathbf{p}_{\mathbf{v}}$
V_{1}	No	0	0
$\mathrm{~V}_{2}$	No	2	$\mathrm{~V}_{1}$
$\mathrm{~V}_{3}$	No	INF	0
$\mathrm{~V}_{4}$	No	-22	$\mathrm{~V}_{7}$
$\mathrm{~V}_{5}$	No	12	$\mathrm{~V}_{2}$
$\mathrm{~V}_{6}$	No	-14	$\mathrm{~V}_{4}$
$\mathrm{~V}_{7}$	No	18	$\mathrm{~V}_{5}$

Running time?
Each vertex can be dequeued at most $|\mathrm{V}|$ times per edge, meaning that the running time is now $O\left(|E|^{*}|V|\right)$, which is significantly worse than for the algorithm without negative costs.

Dijkstra and negative edge costs.

What about negative cost cycles?
This will run our queue indefinitely, so we need to make a decision about when to stop.

If you stop after every vertex has been dequeued $|V|+1$ times, you will guarantee termination.

