
Friday, December 2, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, pp. 820-821

CS 106B
Lecture 27: A* Heuristics and
Minimum Spanning Trees

Today's Topics

•Logistics
•We updated the Trailblazer alternate route description on the handout.

•Typedef definition
•Real Graph: Internet routers and traceroute

•More on Trailblazer
•A* Heuristics
•heuristic bounds, and why we want to underestimate

•Minimum Spanning Trees
•Kruskal's algorithm

•Dijkstra and negative weights (extra slides)

C++: typedef
In Assignment 7, you will use a Vector<Vertex *> type for all your paths.
Because paths are used so often in the assignment, we have defined a type
called Path, which is simply a Vector<Vertex *>. To define a new type in
C++, you can use the typedef keyword, as follows:

typedef Vector<Vertex *> Path;

Now, you can use Path as any other variable, and it is just a Vector<Vertex *>:

Path p;
if (p.size() > 0) {
 Vertex *v = p[0];
}
for (Vertex *v : p) {
 cout << "Next vertex name: " << v->name << endl;
}

Real Graphs!
There was a Tiny Feedback from the last lecture that said,

❝Would love more stories about when you two use these different search
algorithms more in real life.❞

On Monday we played the "Wikipedia Get to Philosophy" game with the Internet,
which have web pages with links that form a graph. Let's see another example
of how the Internet is a real graph in a completely different way: Routers

How does a message get sent from your computer to
another computer on the Internet, say in Australia?

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Let's simplify a bit
your computer

computer in
Australia

A

B

C

D

E

F

The destination computer has a
name and an IP address, like
this:
www.engineering.unsw.edu.au
IP address: 149.171.158.109

The first number denotes the
"network address" and routers
continually pass around
information about how many
"hops" they think it will take for
them to get to all the networks.
E.g., for router C: router hops

A 2
B 1
C -
D 1
E 2
F 2

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

Each router knows its neighbors,
and it has a copy of its neighbors'
tables. So, B would have the
following tables:

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose?

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose? D.

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

Traceroute
We can use a program called "traceroute" to tell us the path

between our computer and a different computer:
traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: CENIC
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit
corporation formed in 1996 to provide high-performance, high-bandwidth networking services
to California universities and research institutions (source: Wikipedia)

Traceroute: Pacificwave (Seattle)
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Pass Internet traffic directly with other major national and international
networks, including U.S. federal agencies and many Pacific Rim R&E
networks (source: http://www.pnwgp.net/services/pacific-wave-peering-
exchange/)

Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com

Traceroute: Australia
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

Traceroute: University of New South Wales
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 7.414 ms 9.155 ms 8.288 ms
 2 gnat-2.sunet (172.24.70.12) 0.339 ms 1.532 ms 0.423 ms
 3 csmx-west-rtr-vl3866.sunet (171.64.66.2) 38.916 ms 10.506 ms 8.402 ms
 4 dca-rtr-vlan8.sunet (171.64.255.204) 0.530 ms 0.521 ms 0.713 ms
 5 dc-svl-agg4--stanford-10ge.cenic.net (137.164.50.157) 1.554 ms 1.653 ms 2.828 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.212 ms 1.161 ms 1.204 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.994 ms 17.998 ms 18.319 ms
 8 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 160.020 ms 160.234 ms 159.922 ms
 9 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 160.285 ms 160.076 ms 160.118 ms
10 138.44.5.1 (138.44.5.1) 160.124 ms 160.138 ms 160.068 ms
11 ombcr1-te-1-5.gw.unsw.edu.au (149.171.255.106) 160.090 ms 160.381 ms 160.185 ms
12 r1dcdnex1-po-2.gw.unsw.edu.au (149.171.255.178) 160.909 ms 160.847 ms 160.921 ms
13 dcfw1-ae-1-3049.gw.unsw.edu.au (129.94.254.60) 160.592 ms 160.558 ms 160.949 ms
14 www.engineering.unsw.edu.au (149.171.158.109) 160.978 ms 161.184 ms 160.987 ms

161 milliseconds to get to the final computer

More Real Graphs: Chris Piech's Research!

18

Autonomously	Generating	Hints	by	
Inferring	Problem	Solving	Policies

19

20

Each node
is a unique

partial
solution

Each edge is what a
teacher suggested

Solution

Pink dots
are

students.

21

22

Unique
submissions

solution

Machine	Learning	Problem

23

solution

Teacher
“Policy”

Machine	Learning	Problem

24

solution

Student 1

Example	Student

25

solution

Student 2

Example	Student

26

Student 1,203,403

solution

Example	Student

27

solution

Teacher
“Policy”

Machine	Learning	Problem

28

Back to Trailblazer

a
c

b

Road Map Node

a
c

b

Road Map Node

a
c

b

Road Map Edge

a
c

b

Road Map Edge

a
c

b

4

6

Road Map Edge Cost

a
c

b

pathCost = 14

Road Map Path Cost

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

Could Google Just Precompute?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

How many nodes in google maps graph?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

~ 75 million

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

n2

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

6 x 1015

1 petasecond = 31.7 million years

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

Can you think of a heuristic?

start

goal

Road Map Heuristic

currPath

currNode

start

goal

Road Map Heuristic

currPath

currNode

start

goal

We must underestimate this time

Distance on surface of
earth

Heuristic = Speed on fastest
highway

Direct Highway

For Trailblazer:
Distance on surface of earth is getCrowFlyDistance()
Speed on fastest highway is getMaxRoadSpeed()

46

Distance to Landmarks

47

A

B

Distance < abs(A – B)

Landmark Heuristic

48

Best of All Heuristics

49

s tu

priority(u) = distance(s, u) + heuristic(u, t)

Underestimate of

Future cost

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Same as Dijkstra

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will be the same or faster than
Dijkstra, and will find the shortest
path (this is the only "admissible"

heuristic for A*.

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will only follow the best path, and
will find the best path fastest (but

requires perfect knowledge)

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Won't necessarily find
shortest path (but might run

even faster)

54

Definition: An admissible heuristic always
underestimates the true cost.

Admissible Heuristic

Could you precompute this for all your vertices? Yes, but it would not be feasible.

Spanning Trees and Minimum Spanning Trees
Definition: A Spanning Tree (ST) of a connected undirected weighted graph G is a subgraph
of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A
Minimum Spanning Tree (MST) of G is a ST of G that has the smallest total weight among
the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

•Kruskal's	algorithm:	Finds	a	MST	in	a	given	graph.	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue	based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected	to	one	another, 
	 	 add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

Kruskal's Algorithm to find a Minimum Spanning Tree

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• Kruskal's	algorithm	would	output	the	following	MST:	
– {a,	b,	c,	d,	f,	h,	i,	k,	p}	

• The	MST's	total	cost	is:	
	1+2+3+4+6+8+9+11+16	=	60

a:1 b:2
c:3

d:4

f:6

h:8

i:9

k:11

p:16

Kruskal Example

• What	data	structures	should	we	use	to	implement	this	algorithm?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 
				based	on	their	weight	(cost).	

	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected,  
	 				add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

79

• Need	some	way	to	identify	which	vertexes	are	"connected"	to	which	
other	ones	
– we	call	these	"clusters"	of	vertices	

• Also	need	an	efficient	way 
to	figure	out	which	cluster 
a	given	vertex	is	in.	

• Also	need	to	merge	clusters 
when	adding	an	edge.

References and Advanced Reading

•References:
•A* Heuristics: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
•Minimum Spanning Tree visualization: https://visualgo.net/mst
•Kruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's_algorithm

•Advanced Reading:
•How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/
week1/InternetWhitepaper.htm

•http://www.explainthatstuff.com/internet.html

Extra Slides

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

Dijkstra fails with negative edge
costs. Once a vertex is declared
known (say,v4), it is possible from
some other unknown vertex to create
a shorter path to the vertex (say, by
eventually looking at v7→v4).

Is there an easy solution?

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

Is there an easy solution?

A naïve approach might be to add a
delta (in this case, 41) to all paths,
and then apply Dijkstra’s algorithm,
but this fails because paths with
many edges become more weighty
than paths with few edges.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
43

51

43
4445 42

43

46
49 1

47

42

Is there an easy solution?

A naïve approach might be to add a
delta (in this case, 41) to all paths,
and then apply Dijkstra’s algorithm,
but this fails because paths with
many edges become more weighty
than paths with few edges.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

So, there isn’t a particularly easy
solution. However, we can solve the
problem with a combination of the
weighted and unweighted
algorithms, but at a drastically
increased running time cost.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

We have to forget about the idea of
“known” vertices, since we will have
to be able to change our mind if
necessary (the greedy algorithm
doesn’t work properly).

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

Idea:
1. Place s on a queue
2. At each stage, dequeue a vertex, v. Then,

find all vertices, w, adjacent to v, such that:
	 	 	 	 dw > dv + costv,w
3. Update dw and place w on the queue if it

isn’t already there (set a boolean to indicate
presence in the queue)

4. Repeat until the queue is empty.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 Yes 0 0
v2 No INF 0
v3 No INF 0
v4 No INF 0
v5 No INF 0
v6 No INF 0
v7 No INF 0

v1

queue

Dequeue v1 and check weights
for v2 and v4. Update and place
in queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 Yes 2 v1

v3 No INF 0
v4 Yes 1 v1

v5 No INF 0
v6 No INF 0
v7 No INF 0

v2 v4

queue

Dequeue v2 and check weights
for v4 and v5. Update and place
in queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 Yes 1 v1

v5 Yes 12 v2

v6 No INF 0
v7 No INF 0

v4 v5

queue

Dequeue v4 and check weight
for v6. Update and place in
queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No 1 v1

v5 Yes 12 v2

v6 Yes 9 v4

v7 No INF 0

v5 v6

queue

Dequeue v5 and check weights
for v4 and v7. Update and place
in queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No 1 v1

v5 No 12 v2

v6 Yes 9 v4

v7 Yes 18 v5

v6 v7

queue

Dequeue v6 and there aren’t
any weights to check (v6
doesn’t have any out-going
edges).

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No 1 v7

v5 No 12 v2

v6 No 9 v4

v7 Yes 18 v5

v7

queue

Dequeue v7 and check weights
for v4 and v6. v4 will get
updated and placed back in
the queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 Yes -22 v7

v5 No 12 v2

v6 No 9 v4

v7 No 18 v5

v4

queue

Dequeue v4 and check weight
for v6. v6 will get updated and
placed back in the queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No -22 v7

v5 No 12 v2

v6 Yes -14 v4

v7 No 18 v5

v6

queue

Finally, Dequeue v6. There
aren’t any vertices to check (no
out-going edges from v6), and
that will empty the queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No -22 v7

v5 No 12 v2

v6 No -14 v4

v7 No 18 v5

queue

Finally, Dequeue v6. There
aren’t any vertices to check (no
out-going edges from v6), and
that will empty the queue.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

v in
queue? dv pv

v1 No 0 0
v2 No 2 v1

v3 No INF 0
v4 No -22 v7

v5 No 12 v2

v6 No -14 v4

v7 No 18 v5

Running time?

Each vertex can be dequeued
at most |V| times per edge,
meaning that the running time
is now O(|E| * |V|), which is
significantly worse than for the
algorithm without negative
costs.

Dijkstra and negative edge costs.

v3

v1

v6 v7

v5v4

v2
2

10

2
34 1

2

5
8 -40

6

1

What about negative cost cycles?

This will run our queue indefinitely, so we need
to make a decision about when to stop.

If you stop after every vertex has been
dequeued |V|+1 times, you will guarantee
termination.

