
Friday, September 30, 2016

Programming Abstractions

Fall 2016

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 3 - 4

CS 106B
Lecture 3: C++ Strings

Today's Topics
• Logistics:

• TreeHacks Organizing Team Info Session, Tuesday Oct. 4th
• Lathrop 298, 6-7pm. Link: tinyurl.com/treehacks
• You will know all you need for Fauxtoshop by Monday's lecture

• Homework 1:
• Library Bug, input/output, general comments

• Reference Semantics review
• Mystery Function example

• Strings
• C++ strings vs C strings
• Characters
• Member Functions
• Stanford Library extensions
• Char and <cctype>

HW1 Notes
•Homework 1: Fauxtoshop
•There is a very annoying bug in the Fauxtoshop project that you cannot control (we may
have found a fix -- see Piazza post @35). Sometimes, when you load an image, the
program simply stops and doesn't load the image. If this happens, you must re-start
your program (I know -- not fun!). Please apply the fix!

•For input, you should be using the Stanford library function getLine() and
getInteger() as follows (we will talk about strings next!):

string filename = getLine("Enter name of image file to open (or blank to quit): ");
int myInteger = getInteger("Enter degree of scatter [1-100]: ");

•You should start to get familiar with the Stanford Library
•Remember, procedural decomposition is super important. Your functions should be
short (less than 30 lines!) and should each perform a single, coherent task.

•The functions for each part of this assignment do not need to be long -- think about
what you are trying to accomplish, decide on an algorithm, and plan what you want the
function to do. Then write the code.

Function and References Review: CS 106 Game Show!

Gameshow idea and
implementation by

Chris Piech

Helper Function (see CS 106B website for full code)

Helper Function (see CS 106B website for full code)
Function	 that	returns	an	integer

Helper Function (see CS 106B website for full code)

Useful Stanford Library function --
where to I find these?? The website!
http://stanford.edu/~stepp/cppdoc/

Welcome Message in a File

6
Welcome to the CS106B game show!
You stand in front of three doors
and behind each door is a special prize.
Will you be brave?
Will you be wise?
Step right up and try your luck.

welcome.txt
Located in the res folder in the project.

Another Helper Function

Another Helper Function
creates a file

stream variable

Another Helper Function
opens the file
"welcome.txt"

Another Helper Function

declares a
string

Another Helper Function

Puts the next
line in the file
into the string
(which is the

number of lines
of text to read)

Another Helper Function

Loops to read
all the lines and

print them to
the screen.

Another Helper Function

CS 106B Game Show

The Doors

Volunteer!

The Doors

The Doors
Integer division
produces an

integer!

Not passed by
reference!

Change does
not propagate
back to calling

function!

Pineapples are
delicious and

healthy

Tricky Reference Mystery Example (from Wed.)
What is the output of this code? Talk to your neighbor! (and this is a good example
for writing down the variables and keeping track on paper!
void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

Tricky Reference Mystery Example

void mystery(int& b, int c, int& a) {
 a++;
 b--;
 c += a;
}

int main() {
 int a = 5;
 int b = 2;
 int c = 8;
 mystery(c, a, b);
 cout << a << " " << b << " " << c << endl;
 return 0;
}

// A. 5 2 8
// B. 5 3 7
// C. 6 1 8
// D. 61 13
// E. other

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples

What is the output of this code? Talk to your neighbor! (and this is a good example
for writing down the variables and keeping track on paper!

Strings (3.1)

#include<string>
...
string s = "hello";

•A string is a sequence of characters, and can be the empty string: ""
•In C++, a string has "double quotes", not single quotes:
"this is a string"
'this is not a string'

•Strings are similar to Java strings, although the functions have different names and in
some cases different behavior.

•The biggest difference between a Java string and a C++ string is that C++ strings are
mutable (changeable).

•The second biggest difference is that in C++, we actually have two types of strings
(more on that in a bit)

(not this type of string) (or this one)

Strings and Characters
•Strings are made up of characters of type char, and the characters of a string can be
accessed by the index in the string:
string s = "Fear the Tree";

index 0 1 2 3 4 5 6 7 8 9 10 11 12
character 'F' 'e' 'a' 'r' ' ' 't' 'h' 'e' ' ' 'T' 'r' 'e' 'e'

char c1 = s[3] // 'r'
char c2 = s.at(2) // 'a'

•Notice that chars have single quotes and are limited to one ASCII character. A space
char is ' ', not '' (in fact, '' is not a valid char at all. It is hard to see on the slide, but
there is an actual space character between the single quotes in a valid space char,
and there is no space in the not-valid example)

ASCII
•Characters have a numerical representation,
cout << (int) 'A' << endl; // 65

•This means you can perform math on characters, but you
need to be careful:

 string plainText = "ATTACK AT DAWN";
 string cipherText = "";
 int key = 5; // caesar shift by five

 // only works for uppercase!
 for (int i=0;i<(int)plainText.length();i++) {
 char plainChar = plainText[i];
 char cipherChar;
 if (plainChar >= 'A' && plainChar <= 'Z') {
 cipherChar = plainText[i] + key;
 if (cipherChar > 'Z') {
 cipherChar -= 26; // wrap back around
 }
 } else {
 cipherChar = plainChar;
 }
 cipherText += cipherChar;
 }
 cout << "Plain text: " << plainText << endl;
 cout << "Cipher text: " << cipherText << endl;

Output:
Plain text: ATTACK AT DAWN
Cipher text: FYYFHP FY IFBS

String Operators (3.2)
•As in Java, you can concatenate strings using + or +=
string s1 = "Chris";
string sSq = s1 += "Squared"; // sSq == ChrisSquared

•Unlike in Java, you can compare strings using relational operators:
string s2 = "Zebra";
if ((s1 > s2) && (s2 != "Walrus")) { // false
 ...
}

•Unlike in Java, strings are mutable and can be changed (!):
•s2.append("Giraffe"); // s2 is now "ZebraGiraffe"
•s2.erase(4,3); // s2 is now "Zebrraffe" (which would be a very cool animal)
•s2[5] = 'i'; // s2 is now "Zebrriffe"
•s2[9] = 'e'; // BAD!!!1! PROGRAM MAY CRASH! POSSIBLE BUFFER OVERFLOW! NO NO NO!

•Unlike in Java, C++ does not bounds check for you! The compiler doesn't check for you, and Qt
Creator won't warn you about this. We have entered the scary territory of "you must know what you
are doing". Buffer overflows are a critical way for viruses and hackers to do their dirty work, and they
can also cause hard to track down bugs.

String Member Functions
Function Description

s.append(str) add	text	to	the	end	of	a	string

s.compare(str) return	-1,	0,	or	1	depending	on	relative	ordering

s.erase(index,	length)			 delete	text	from	a	string	starting	at	given	index

s.find(str)		
s.rfind(str)

first	or	last	index	where	the	start	of	str	appears	in	
this	string	(returns	string::npos	if	not	found)

s.insert(index,	str) add	text	into	a	string	at	a	given	index

s.length()	or	s.size() number	of	characters	in	this	string

s.replace(index,	len,	str) replaces	len	chars	at	given	index	with	new	text

s.substr(start,	length)	or	
s.substr(start)

the	next	length	characters	beginning	at	start	
(inclusive);	if	length	omitted,	grabs	till	end	of	string

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {
 name.erase(7, 5); // "Donald"
}

C++ vs C strings

•C++ has (confusingly) two kinds of strings:
•C strings (char arrays), inherited from the C language
•C++ strings (string objects), which is part of the standard C++ library.
•When possible, declare C++ strings for better usability (you will get plenty of C strings in CS 107!)

•Any string literal such as "hi there" is a C string.
•C strings don't have member functions, and you must manipulate them through regular functions.
You also must manage the memory properly -- this is SUPER IMPORTANT and involves making sure
you have allocated the correct memory -- again, this will be covered in detail in CS 107.

•E.g., C strings do not have a .length() function (there are no member functions, as C strings are
not part of a class.

•You can convert between string types:
•string("text") converts C string into C++ string
•string.c_str() returns a C string out of a C++ string

C string issues

string s1 = "hi" + "there";
• Does not compile; C strings can't be concatenated with +.

string s2 = string("hi") + "there";
string s3 = "hi"; // "hi" is auto-converted to string
s += "there";

•These all compile and work properly.

int n = (int) "42";
•Bug; sets n to the memory address of the C string "42" (ack!). Qt Creator will produce an error, too

int n = stringToInteger("42");
•Works, because of explicit conversion of "42" to a C++ string (and stringToInteger() is part
of the Stanford C++ library)

C string issues
string s = "hi" + '?'; // C-string + char
string s = "hi" + 41; // C-string + int

•Both bugs. Produces garbage, not "hi?" or "hi42". (memory address stuff)

string s = string("") + "hi" + '?'
•does work because of the empty C++ string at the beginning

string s = "hi"; // char '?' is concatenated to string
s += '?'; // "hi?"
•Works, because of auto-conversion.

•s += 41; // "hi?)"
•Adds character with ASCII value 41, ')', doesn't produce "hi?41".

s += integerToString(41); // "hi?41"
•Works, because of conversion from int to string.

What's the Output? (Talk to your neighbor!)
void mystery(string a, string &b) {
 a.erase(0,1);
 b += a[0];
 b.insert(3, "FOO");
}

int main() {
 string a = "Stanford";
 string b = "Tree";
 mystery(a,b);
 cout << a << " " << b << endl;
 return 0;
}

Answer:
Stanford TreFOOet

Stanford String Library (3.7)
#include "strlib.h"
These are not string class functions.

Function Description

endsWith(str,	suffix)	
startsWith(str,	prefix)

returns	true	if	the	given	string	begins	or	ends	with	
the	given	prefix/suffix	text

integerToString(int)	
realToString(double)	
stringToInteger(str)	
stringToReal(str)

returns	a	conversion	between	numbers	and	strings

equalsIgnoreCase(s1,	s2) true	if	s1	and	s2	have	same	chars,	ignoring	casing
toLowerCase(str)	
toUpperCase(str) returns	an	upper/lowercase	version	of	a	string

trim(str) returns	string	with	surrounding	whitespace	removed

if (startsWith(nextString, "Age: ")) {
 name += integerToString(age) + " years old";
}

Recap
•Fauxtoshop
•Sorry about the bug! Loading images sometimes doesn't work (though hopefully the fix
works!) ಠ_ಠ

•Use getLine() and getInteger() to read values.

•Strings
• C++ has both C strings and C++ strings. Both are, under the covers, simply arrays of
characters. C++ strings handle details for you automatically, C-strings do not.
•C++ strings are much more functional and easier to use
•Many times (but not always), C-strings auto-convert to C++ strings when necessary
•Characters are single-quoted, single-character ASCII numerical values (be careful when
applying arithmetic to them)

•C++ strings have many functions you can use, e.g., s.length() and s.compare()
•The Stanford library also has some extra string functions, which are not part of the string
class, but are helpful (e.g.,

References and Advanced Reading

•References (in general, not the C++ references!):
•Textbook Chapter 3
•<cctype> functions: http://en.cppreference.com/w/cpp/header/cctype
•Code from class: see class website (https://cs106b.stanford.edu)
•Caesar Cipher: https://en.wikipedia.org/wiki/Caesar_cipher

•Advanced Reading:
• C++ strings vs C strings: http://cs.stmarys.ca/~porter/csc/ref/c_cpp_strings.html
• String handling in C++: https://en.wikipedia.org/wiki/C%2B%2B_string_handling
• Stackoverflow: Difference between string and char[] types in C++: http://
stackoverflow.com/questions/1287306/difference-between-string-and-char-types-in-
c

Extra Slides

String Exercise (work with your neighbor)
Write a function called nameDiamond that accepts a string as a parameter and prints it
in a "diamond" format as shown below.

• For example, nameDiamond("CHRIS") should print:

C
CH
CHR
CHRI
CHRIS
 HRIS
 RIS
 IS
 S

String Exercise Possible Solution
One possible solution (break into two parts!)

void nameDiamond(string s) {
 int len = (int)s.length(); // cast length to int to avoid warning
 // print top half of diamond
 for (int i = 1; i <= len; i++) {
 cout << s.substr(0, i) << endl;
 }

 // print bottom half of diamond
 for (int i = 1; i < len; i++) {
 for (int j = 0; j < i; j++) { // indent
 cout << " "; // with spaces
 }
 cout << s.substr(i, len - i) << endl;
 }
}

