CS106B Chris Gregg
Spring 2017

Section Handout #1

This week’s section handout has practice with strings, data structures such as Grids, Vectors, Stacks and
Queues as well as review of Big-Oh Notation.

1. CrazyCaps (CodeStepByStep)
Write a function named crazyCaps that accepts a string reference as a parameter and changes that string

to have its capitalization altered such that the characters at even indexes are all in lowercase and odd
indexes are all in uppercase. For example, if a variable s stores "Hey!! THERE!", the call of crazyCaps(s);
should change s to store "hEy!! tHeRe!".

2. Mirror (CodeStepByStep)
Write a function mirror that accepts a reference to a grid of integers as a parameter and flips the grid

along its diagonal, so that each index [i][j] contains what was previously at index [j][1] in the grid.
You may assume the grid is square, that is, it has the same number of rows as columns. For example, the
grid below at left would be altered to give it the new grid state at right:

{{ 6) 1) 9) 4}: {{61 '2: 14: 21})
{_2) 5) 8) 12}: RN {1J 5) 39: 55})
{14, 39, -6, 18}, {9, 8, -6, 73},
{21, 55, 73, -3}} {4, 12, 18, -3}}

3. Rotate Clockwise (CodeStepByStep)

Write a function rotateClockwise90Degrees that accepts a reference to a grid of integers as a parameter
and rotates the Grid 90 degrees clockwise. You may assume the grid is square, that is, it has the same
number of rows as columns. For example, the grid below at the left would be altered to give it the new
grid state at right.

{{ 6, 1, 9) 4}) {{21: 14, '2) 6})
{'21 5, 8, 12}) N {551 39, 5, 1})
{14, 39, -6, 18}, {73, -6, 8, 9},
{21, 55, 73, -3}} {-3, 18, 12, 4}}

4. Cumulative (CodeStepByStep)

Write a function named cumulative that accepts a reference to a Vector of integers as a parameter and
modifies it so each element contains the sum of the original vector up through that index. For example, if
aVector variable v stores {1, 1, 2, 3, 5}, the call of cumulative(v); should modify it to store {1, 2,
4, 7, 12} Don't do more than one pass through the original vector.

5. Stretch (CodeStepByStep)

Write a function named stretch that accepts a reference to a vector of integers as a parameter and
modifies it to be twice as large, replacing every integer with a pair of integers, each half the original. If a
number in the original vector is odd, then the first number in the new pair should be one higher than the
second so that the sum equals the original number. For example, passing the vector {18, 7, 4, 24, 11}
should modify the vector to contain {9, 9, 4, 3, 2, 2, 12, 12, 6, 5}.

Thanks to Aaron Broder, Marty Stepp, Victoria Kirst, Jerry Cain, and other past CS106B and X instructors
and TAs for contributing problems on this handout.

http://www.codestepbystep.com/problem/view/cpp/collections/grid/mirror
http://www.codestepbystep.com/problem/view/cpp/collections/grid/mirror
http://www.codestepbystep.com/problem/view/cpp/collections/grid/rotate
http://www.codestepbystep.com/problem/view/cpp/collections/vector/cumulative
http://www.codestepbystep.com/problem/view/cpp/collections/vector/stretch

6. Big-Oh Analysis
Give a tight bound on the nearest runtime complexity for each of the following code fragments in Big-Oh,
in terms of the variable N. In other words, find the growth rate of the code’s runtime as N grows.

// a) // b)

int sum = ©; int sum = ©;

for (int 1 = 1; i <= N + 2; i++) { for (int i = 1; i <= N - 5; i++) {
sum++; for (int j =1; j <= N - 5; j += 2) {

} sum++;

for (int j = 1; j <= N * 2; j++) { }
sum += 5; }

} cout << sum << endl;

cout << sum << endl;

// c) // d)
int sum = N; HashSet<int> setil;
for (int i = @; i < 1000000; i++) { for (int i = 1; i <= N; i++) {
for (int j = 1; j <= 1; j++) { setl.add(i);
sum += N; }
}
for (int j = 1; j <= 1i; j++) { Set<int> set2;
sum += N; for (int i = 1; i <= N; i++) {
} setl.remove(i);
for (int j = 1; j <= 1i; j++) { set2.add(i + N);
sum += N; }
} cout << “done!” << endl;
}

cout << sum << endl;

7. Oh? More Big-Oh?
Give a tight bound on the nearest runtime complexity for each of the following code fragments in Big-Oh,
in terms of the variable N. In other words, find the growth rate of the code’s runtime as N grows.

// a) // b)
int sum = ©9; int sum = ©9;
for (int 1 = 1; i <= N - 2; i++) { for (int 1 = 1; i <= N * 2; i++) {
for (int j =1; j <=1 + 4; j++) { for (int j =1; j<=1/2; j +=2) {
sum++; for (int k = @; k < N * N; k++) {
} sum++;
sum++; }
} }
cout << sum << endl; }

cout << sum << endl;

// c) // d)

Vector<int> list; int sum = ©0;

for (int 1 = 0; i < N; i++) { for (int i = 1; i <= 100000; i++) {
list.insert(@, i * i); for (int j = 1; j <= 1i; j++) {

} for (int k = 1; k <= N; k++) {

Setcint> set; Sum++;

for (int k : list) { }
set.add(k); }

} }

cout << “done!” << endl; cout << sum << endl;

8. Keith Numbers (CodeStepByStep)

A Keith Number is defined as any n-digit integer that appears in the sequence that starts off with the
number’s n digits and then continues such that each subsequent number is the sum of the preceding n.
All one-digit numbers are trivially Keith numbers, but there are more interesting ones as well. For
example, the number 7385 is a Keith number because of the following sequence:

7.3,8,5, 23,39,75,142, 279, 535, 1031, 1987, 3832, 7385

Keith numbers are computationally hard to calculate; there are only about 100 known right now. Write a
function findKeithNumbers that takes a minimum and maximum value and finds all Keith numbers
between those values (inclusive). For each number, it should print the sequence that proves it is a Keith
number. For example, if you call findKeithNumbers(1, 1000), it should print:

1: {1}

2: {2}

3: {3}

4: {4}

5: {5}

6: {6}

7: {7}

8: {8}

9: {9}

14: {1, 4, 5, 9, 14}

19: {1, 9, 10, 19}

28: {2, 8, 10, 18, 28}

47: {4, 7, 11, 18, 29, 47}

61: {6, 1, 7, 8, 15, 23, 38, 61}
5,

75: {7, 12, 17, 29, 46, 75}
197: {1, 9, 7, 17, 33, 57, 107, 197}
742: {7, 4, 2, 13, 19, 34, 66, 119, 219, 404, 742}

9. Reorder (CodeStepByStep)

Write a function named reorder that takes a queue of integers that are already sorted by absolute value,
and modifies it so that the integers are sorted normally. The only auxiliary data structure you can use is a
single Stack<int>. For example, passing the queue {1, -2, 3, 4, -5, -6, 7}changesitto{-6, -5,
-2, 1, 3, 4, 7}.

10. CheckBalance (CodeStepByStep)

Write a function named checkBalance that accepts a string of source code and uses a Stack to check
whether the braces/parentheses are balanced. Every (or { must be closed by a } or) in the opposite
order. Return the index at which an imbalance occurs, or -1 if the string is balanced. If any (or { are
never closed, return the string's length.

Here are some example calls:

// index ©123456789012345678901234567890

checkBalance("if (a(4) > 9) { foo(a(2)); }") // returns -1 because balanced
checkBalance("for (i=0;i&1t;a(3};i++) { foo{);)") // returns 14 because } out of order
checkBalance("while (true) foo(); } (OO") // returns 20 because } doesn't match any {
checkBalance("if (x) {") // returns 8 because { is never closed

Constraints: Use a single stack as auxiliary storage.

http://www.codestepbystep.com/problem/view/cpp/collections/vector/findKeithNumbers
http://www.codestepbystep.com/problem/view/cpp/collections/stackqueue/reorder
http://www.codestepbystep.com/problem/view/cpp/collections/stackqueue/checkBalance

