
CS106B Chris Gregg
Spring 2017

Section Handout #5 Solutions
If you have any questions about the solutions to the problems in this handout, feel free to reach out to your section
leader, Anton, or Chris for more information.

1. A Series of Unfortunate References

1 -84 2

2. Section Leaders, Then and Now
Below is the state of memory just prior to the call to tyler:

Below is the state of memory just before the call to tyler exits:

3. What’s the Code Do?

4. What’s the Code?
// a)
ListNode *temp = list->next->next;
temp->next = list->next;
list->next->next = list;
list->next->next->next = NULL;
list = temp;

// b)
list->next->next->next = list;
list = list->next->next;
ListNode *list2 = list->next->next;
list->next->next = NULL;

5. Is Sorted
bool isSorted(ListNode *front) {
 if (front != NULL) {
 ListNode* current = front;
 while (current->next != NULL) {
 if (current->data > current->next->data) {
 return false;
 }
 current = current->next;
 }
 }
 return true;
}

6. Count Duplicate Strings
int countDuplicateStrings(StringNode *front) {
 int count = 0;
 if (front != NULL) {
 StringNode *current = front;
 while (current->next != NULL) {
 if (current->data ==current->next->data) {
 count++;
 }
 current = current->next;
 }
 }
 return count;
}

1 3 list

2

1

3

list 2

7. Remove All Threshold
void removeAllThreshold(DoubleNode *&front, double value, double threshold) {
 while (front != NULL && front->data >= value - threshold
 && front->data <= value + threshold) {
 DoubleNode *trash = front;
 front = front->next;
 delete trash;
 }
 if (front != NULL) {
 DoubleNode *current = front;
 while (current->next != NULL) {
 if (current->next->data >= value - threshold
 && current->next->data <= value + threshold) {
 DoubleNode *trash = current->next;
 current->next = current->next->next;
 delete trash;
 } else {
 current = current->next;
 }
 }
 }
}

8. Double List
void doubleList(ListNode *&front) {
 if (front != NULL) {
 ListNode *half2 = new ListNode(front->data);
 ListNode *back = half2;
 ListNode *current = front;
 while (current->next != NULL) {
 current = current->next;
 back->next = new ListNode(current->data);
 back = back->next;
 }
 current->next = half2;
 }
}

9. Split
void split(ListNode *&front) {
 if (front != NULL) {
 ListNode *current = front;
 while (current->next != NULL) {
 if (current->next->data < 0) {
 ListNode *temp = current->next;
 current->next = current->next->next;
 temp->next = front;
 front = temp;
 } else {
 current = current->next;
 }
 }
 }
}

10. Reverse Recurse
ListNode *reverse(ListNode *front) {
 if (front == NULL) return NULL;
 if (front->next == NULL) return front;

 ListNode *rest = reverse(front->next); // reverse the whole list but the front
 front->next->next = front; // update the next pointer of the 2nd element (now
 // the second to last element) to point to front
 front->next = NULL; // update the next pointer of front (now the
 // end of the list) to be NULL

 return rest;
}

11. Merge
Provided are two solutions for merging lists. The first one is recursive, and the second one is iterative.

ListNode *mergeLists(ListNode *one, ListNode *two) {
 if (one == NULL) return two;
 if (two == NULL) return one;

 // got this far? then neither list is empty
 if (one->data <= two->data) {
 one->next = mergeLists(one->next, two);
 return one;
 } else {
 two->next = mergeLists(one, two->next);
 return two;
 }
}

ListNode *mergeLists(ListNode *one, ListNode *two) {
 ListNode *merge = NULL;
 ListNode **mergePtr = &merge;

 while (one != NULL && two != NULL) {
 if (one->data <= two->data) {
 *mergePtr = one;
 one = one->next;
 } else {
 *mergePtr = two;
 two = two->next;
 }
 mergePtr = &((*mergePtr)->next);
 }

 if (one != NULL) *mergePtr = one;
 else *mergePtr = two;
 return mergePtr;
}

Why might you preference one solution over the other? The recursive solution is a bit shorter, and depending on
how comfortable you are with recursion versus advanced pointer techniques like double pointers, it might be
easier to understand. However, the structure of this problem means you’ll make a recursive call for every element
in the finished list, which means you could end up with too many stack frames. Oftentimes, when you’re doing
“tail recursion” (when you make a single recursive call, at the very end of the function), it might actually be better
to write an iterative solution, even if it’s more complicated.

Note that some programming environments are able to optimize for tail recursion, meaning it’s less of a
performance hit to use it.

12. Draw Polygonal Path
void drawPolygonalPath(GWindow &window, PointNode *head) {
 if (head == NULL) {
 return;
 }

 PointNode *current = head;
 window.fillOval(current->x - 1, current->y - 1, 2, 2);

 while (current->next != NULL) {

 window.drawLine(current->x, current->y, current->next->x, current->next->y);
 window.fillOval(current->next->x - 1, current->next->y - 1, 2, 2);
 current = current->next;
 if (current == head) {
 break;
 }
 }
}

13. Braiding Lists
Provided are two solutions for braiding lists. The first one is iterative, and the second one is recursive.

void braid(ListNode *list) {
 ListNode *reverse = NULL;
 for (ListNode *curr = list;
 curr != NULL; curr = curr->next) {
 ListNode *newNode = new ListNode;
 newNode->data = curr->data;
 newNode->next = reverse;
 reverse = newNode;
 }

 // reverse now addresses a memory-independent
 //version of the original list,
 // where all of the nodes are in reverse order.
 ListNode *rest = reverse; //rest addresses part
 //that has yet to be braided
 for (ListNode *curr = list;
 curr != NULL; curr = curr->next->next) {
 ListNode *next = rest->next;
 rest->next = curr->next;
 curr->next = rest;
 rest = next;
 }
}

void braid(ListNode *list, Queue<int> &numbers) {
 if (list == NULL) return;
 numbers.enqueue(list->value);
 braid(list->next, numbers);
 ListNode *newNode = new ListNode;
 newNode->data = numbers.dequeue();
 newNode->next = list->next;
 list->next = newNode;
}

void braid(ListNode *list) {
 Queue<int> numbers;
 braid(list, numbers);
}

Some of the same considerations apply when choosing between these two solutions as with merging lists. Note
that this isn’t actually tail recursion, however, it’s still “unary recursion” (a single recursive call). Oftentimes
problems solved using unary recursion have similarly complex iterative solutions.

14. Instant Runoffs
string identifyLeastPopular(ballot *ballots) {
 Map<string, int> counts;
 for (ballot *curr = ballots; curr != NULL; curr = curr->next;
 counts[curr->votes[0]]++;
 }

 int thresold = -1;
 string leastPopular;
 for (string candidate : counts) {
 if (threshold == -1 || counts[candidate] < threshold) {
 leastPopular = candidate;
 threshold = counts[candidate]
 }
 }

 return leastPopular;
}

string eliminateLeastPopular(ballot *&ballots, string &name) {

 ballot *curr = ballots;
 while (curr != NULL) {
 for (int i = 0; i < curr->votes.size(); i++) {
 if (curr->votes[i] == name) {
 curr->votes.remove(i);
 break; // assume no one ever gets two votes on same ballot
 }
 }

 ballot *next = curr->next;
 if (curr->votes.isEmpty()) {
 // wire up neighboring nodes
 if (next != NULL) next->prev = curr->prev;
 if (ballots == curr) ballots = next;
 else curr->prev->next = next;
 delete curr;
 }
 curr = next;
 }
}

