
YEAH - ADTs
Anton Apostolatos

Source: XKCD

Word
Ladders

Random
Writer

A2: ADTs

Word Ladders

A word ladder is a connection from one word to another, where:

map → mat ✓ map → sit ✘

blame → bhame → shame ✘

bit → sit → fit ✘bit → fit ✓

2) Every word in the ladder is valid

3) Shortest possible!

1) Each word is one character different than the previous

Demo!

Pseudocode
create an empty queue
add the start word to the end of the queue

while (the queue is not empty):
dequeue the first ladder from the queue

if (the final word in this ladder is the destination word):

 return this ladder as the solution

for (each word in the lexicon of English words that differs by one):
if (that word has not been already used in a ladder):

create a copy of the current ladder
add the new word to the end of the copy
add the new ladder to the end of the queue

return that no word ladder exists

How do we know it’s the
shortest path?

Starter code - wordladder.cpp
#include <cctype>

#include <cmath>

#include <fstream>

#include <iostream>

#include <string>

#include "console.h"

using namespace std;

int main() {

 // TODO: Finish the program!

 cout << "Have a nice day." << endl;

 return 0;

}

How to store ladder? Seen words?
Design Decision

Steps

1. Load the dictionary. The file EnglishWords.dat, which is bundled with
the starter files, contains just about every legal English word.

2. Prompt the user for two words to try to connect with a ladder. For

each of those words, make sure to reprompt the user until they enter
valid English words. They don’t necessarily have to be the same length,
though – if they aren’t, it just means that your search won’t find a word
ladder between them.

3. Find the shortest word ladder. Use breadth-first search, as described
before, to search for a word ladder from the first word to the second.

1.

2.

3.

4. Report what you’ve found. Once your breadth-first search terminates:

a. If you found a word ladder, print it out to the console.

b. If you don’t find a word ladder, print out a message to that effect.

5. Ask to continue. Prompt for whether to look for another ladder between a
pair of words.

Steps II

- Pick data structures wisely: not all ADTs are made equal

Tips and Tricks

- Watch out for case sensitivity

Work ↔ wOrK

bit → bat → fat ✓bit → fit → fat ✓

- Ties don’t matter: don’t worry about multiple ladders
of the same length

Questions?

Random Writer

“A monkey hitting keys at random on a

typewriter keyboard for an infinite amount

of time will almost surely type [...] the

complete works of William Shakespeare.” -

Wikipedia

Infinite Monkey Theorem

“To be or
not to be
just
be who you
want to be
or not okay
you want
okay”

Original text

{ {to, be} : {or, just, or},
 {be, or} : {not, not},
 {or, not} : {to, okay},
 {not, to} : {be},
 {be, just} : {be},
 {just, be} : {who},
 {be, who} : {you},
 {who, you} : {want},
 {you, want} : {to, okay},
 {want, to} : {be},
 {not, okay} : {you},
 {okay, you} : {want},
 {want, okay} : {to},
 {okay, to} : {be} }

3-grams

... chapel.
Ham. Do not
believe his
tenders, as
you
go to this
fellow.
Whose
grave's ...

Made-up text

Connects a collection of N - 1 words to all Nth words that follow it in the text

Demo!

Step 1: Build Map

Map<String, int> phonebook;

Key Value

Note that window
is of size N-1!

Wrapping!How can we implement
wrapping...?

How do we store keys / values in the Map?
Design Decision

Step 2: Generate Random Text

Generating Random Text

1. Pick a random key in your map

2. For each subsequent word
randomly choose one using last
two words in generated text

3. Repeat (2) until complete!

... chapel.

Ham. Do not

believe his

tenders, as you

go to this

fellow. Whose

grave's ...

Tips and Tricks
- Think about the collections you want to use in every case. Plan ahead.

- Test each function with small input (tiny.txt)

- To choose a random prefix from a map, consider using the map's keys
member function, which returns a Vector containing all of the keys in the
map.

- For randomness in general, check out "random.h".

- You can loop over the elements of a vector or set using a for-each loop. A
for-each also works on a map, iterating over the keys in the map.

Questions?

