CS 106X
Homework 6, Binary Trees:
21 Questions, Huffman Encoding

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Part A: 21 Questions

* "sequel" to past 20 Questions recursion problem:

— stores question/answer data in a binary tree
— "learns" after losing a game by asking player for new data

(left = "yes") overall root (right = "no")

// questions.txt

| Is it an animal? |

Q:Is it an animal? _ P .
. e e it o | Does it have wheels? |
Q:Can it fly? | (\\. | | ; X .
A:bird | Doe‘s}havea\tiul? | |/Is it nlc¢<< |
Q:Does it have a tail? [mouse | [spider |
A:mouse
A:spider
Q:Does it have wheels?
A:bicycle
Q:Is it nice?
A:TA
A:teacher

Growing question tree

* when computer loses, asks human player for a new Q/A node

(left = "yes") overall root (right = "no")

| Isitan animal? |

Ndch il e | Does it have wheels? |
// log of execution [bird | [Doesithaveatail? | |/Isitnice< |
Is it an animal? y [Dossitmeon?z] [spider |
Can it fly? n
| cat | | mouse |

Does it have a tail? y

Is your object: mouse? no

Drat, I lost. What is your object? cat

Type a yes/no question to distinguish cat from mouse: Does it meow?

And what is the answer for cat? y

Code they will write

®* game state is now stored in a QuestionTree class:

class QuestionTree {
public:
QuestionTree();
~QuestionTree();
int getGamesLost() const;
int getGamesWon() const;
void playGame();
void readData(istream& input); // save to file
void writeData(ostream& output); // load from file

private:

QuestionNode* root; // node = {string data, node* yes/no}

}s

Part B: Huffman encoding

® Uses variable lengths for different characters to take advantage of
their relative frequencies.

Char ASCII value ASCII (binary) Hypothetical Huffman
t 32 00100000 10
‘a’ 97 01100001 0001
'b’ o8 01100010 01110100
"c' 99 01100011 001100
‘e’ 101 01100101 1100

'z! 122 01111010 00100011110

Huffman compression

1. Count occurrences of each char in file

{" ':2, 'a':3, 'b":3, 'c':1, EOF:1} 0
0 1
2a. Place chars, counts into priority queue y -
1 1 2 3 3 0 1 0 1
‘¢’ EOF ' ' 'b' ‘a'
2 2 3 3
2b. Use PQ to create Huffman tree — ﬂ/\l b a
1 1
‘e EOF

3. Traverse tree to find (char — binary) map
{' ':00, 'a':11, 'b':10, 'c':010, EOF=011}

4. Convert to binary (For each char in file, look up binary rep in map)
11 190 00 11 10 900 010 1 1 10 911 ©O

2b) Build tree

3) Tree to binary encodings

®* The Huffman tree tells you the binary encodings to use.
— left means 0, right means 1
— example: 'b' is 10

— example: 'c' is 010

{

— The text "ab ab cab" would be encoded as:

':00,

4) Encode the file

® Based on the preceding tree, we have the following encodings:

'a':11,

'b':10,

'c':010, EOF:011}

char

EOF

binary

11

10

00

11

10

00

010

10

011

— Overall: 1110001110000101110011, (22 bits, ~3 bytes)

byte 1 2 3
char a b a b C a b EOF
binary 1 10 00 11 10 90 9010 1 1 10 011 ©0

Decompressing

1011010001101011011
b a c a C a

— Read each bit one at a time.
— Ifitis O, go left; if 1, go right.

— If you reach a leaf, output the
character there and go back
to the tree root.

® Output:
bac aca 1 1

10

Bit I/0 streams

* ibitstream: Reads one bit at a time from input.

int readBit Reads a single 1 or O;
() returns -1 at end of file

* obitstream: Writes one bit at a time to output.

void writeBit(int bit) Writes a single bit (must be 0 or 1)

— 1i/obitstream also contain the members from 1/ostream.

® open, read, write, fail, close

11

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

