
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106X
Homework 6, Binary Trees:

21 Questions,  Huffman Encoding



2

Part A: 21 Questions
• "sequel" to past 20 Questions recursion problem:

– stores question/answer data in a binary tree

– "learns" after losing a game by asking player for new data

// questions.txt

Q:Is it an animal?

Q:Can it fly?

A:bird

Q:Does it have a tail?

A:mouse

A:spider

Q:Does it have wheels?

A:bicycle

Q:Is it nice?

A:TA

A:teacher



3

Growing question tree
• when computer loses, asks human player for a new Q/A node

// log of execution

Is it an animal? y

Can it fly? n

Does it have a tail? y

Is your object: mouse? no

Drat, I lost. What is your object? cat

Type a yes/no question to distinguish cat from mouse: Does it meow?

And what is the answer for cat? y



4

Code they will write
• game state is now stored in a QuestionTree class:

class QuestionTree {

public:

    QuestionTree();

    ~QuestionTree();

    int getGamesLost() const;

    int getGamesWon() const;

    void playGame();

    void readData(istream& input);     // save to file

    void writeData(ostream& output);   // load from file

private:

    QuestionNode* root;   // node = {string data, node* yes/no}

    ...

};



5

Part B: Huffman encoding
• Uses variable lengths for different characters to take advantage of 

their relative frequencies.

Char ASCII value ASCII (binary)  Hypothetical Huffman

' '  32 00100000          10

'a'  97 01100001        0001

'b'  98 01100010    01110100

'c'  99 01100011      001100

'e' 101 01100101        1100

'z' 122 01111010 00100011110



6

Huffman compression
1. Count occurrences of each char in file

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

2a. Place chars, counts into priority queue

2b. Use PQ to create Huffman tree 

3. Traverse tree to find (char  binary) map

{' ':00, 'a':11, 'b':10, 'c':010, EOF=011}

4. Convert to binary (For each char in file, look up binary rep in map)

11 10 00 11 10 00 010 1 1 10 011 00



7

2b) Build tree



8

3) Tree to binary encodings
• The Huffman tree tells you the binary encodings to use.

– left means 0, right means 1

– example: 'b' is 10

– example: 'c' is 010



9

4) Encode the file
• Based on the preceding tree, we have the following encodings:

{' ':00, 'a':11, 'b':10, 'c':010, EOF:011}

– The text "ab ab cab" would be encoded as:

– Overall: 1110001110000101110011, (22 bits, ~3 bytes)

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3

char a  b     a b     c   a   b  EOF

binary 11 10 00 11 10 00 010 1 1 10 011 00



10

Decompressing

1011010001101011011

– Read each bit one at a time.

– If it is 0, go left;  if 1, go right.

– If you reach a leaf, output the
character there and go back
to the tree root.

• Output:

bac aca

1011010001101011011
 b a  c _ a  c a



11

Bit I/O streams
• ibitstream: Reads one bit at a time from input.

• obitstream: Writes one bit at a time to output.

– i/obitstream also contain the members from i/ostream.
• open, read, write, fail, close

int readBit() Reads a single 1 or 0;
returns -1 at end of file

void writeBit(int bit) Writes a single bit (must be 0 or 1)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

