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CS 106X
Homework 6, Binary Trees:

21 Questions,  Huffman Encoding



2

Part A: 21 Questions
• "sequel" to past 20 Questions recursion problem:

– stores question/answer data in a binary tree

– "learns" after losing a game by asking player for new data

// questions.txt

Q:Is it an animal?

Q:Can it fly?

A:bird

Q:Does it have a tail?

A:mouse

A:spider

Q:Does it have wheels?

A:bicycle

Q:Is it nice?

A:TA

A:teacher
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Growing question tree
• when computer loses, asks human player for a new Q/A node

// log of execution

Is it an animal? y

Can it fly? n

Does it have a tail? y

Is your object: mouse? no

Drat, I lost. What is your object? cat

Type a yes/no question to distinguish cat from mouse: Does it meow?

And what is the answer for cat? y
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Code they will write
• game state is now stored in a QuestionTree class:

class QuestionTree {

public:

    QuestionTree();

    ~QuestionTree();

    int getGamesLost() const;

    int getGamesWon() const;

    void playGame();

    void readData(istream& input);     // save to file

    void writeData(ostream& output);   // load from file

private:

    QuestionNode* root;   // node = {string data, node* yes/no}

    ...

};
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Part B: Huffman encoding
• Uses variable lengths for different characters to take advantage of 

their relative frequencies.

Char ASCII value ASCII (binary)  Hypothetical Huffman

' '  32 00100000          10

'a'  97 01100001        0001

'b'  98 01100010    01110100

'c'  99 01100011      001100

'e' 101 01100101        1100

'z' 122 01111010 00100011110
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Huffman compression
1. Count occurrences of each char in file

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

2a. Place chars, counts into priority queue

2b. Use PQ to create Huffman tree 

3. Traverse tree to find (char  binary) map

{' ':00, 'a':11, 'b':10, 'c':010, EOF=011}

4. Convert to binary (For each char in file, look up binary rep in map)

11 10 00 11 10 00 010 1 1 10 011 00
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2b) Build tree
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3) Tree to binary encodings
• The Huffman tree tells you the binary encodings to use.

– left means 0, right means 1

– example: 'b' is 10

– example: 'c' is 010
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4) Encode the file
• Based on the preceding tree, we have the following encodings:

{' ':00, 'a':11, 'b':10, 'c':010, EOF:011}

– The text "ab ab cab" would be encoded as:

– Overall: 1110001110000101110011, (22 bits, ~3 bytes)

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3

char a  b     a b     c   a   b  EOF

binary 11 10 00 11 10 00 010 1 1 10 011 00
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Decompressing

1011010001101011011

– Read each bit one at a time.

– If it is 0, go left;  if 1, go right.

– If you reach a leaf, output the
character there and go back
to the tree root.

• Output:

bac aca

1011010001101011011
 b a  c _ a  c a
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Bit I/O streams
• ibitstream: Reads one bit at a time from input.

• obitstream: Writes one bit at a time to output.

– i/obitstream also contain the members from i/ostream.
• open, read, write, fail, close

int readBit() Reads a single 1 or 0;
returns -1 at end of file

void writeBit(int bit) Writes a single bit (must be 0 or 1)
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