Lecture 12: Memoization and Structs

Friday, April 28, 2017

reading:
Programming Abstractions in C++, Chapter 10
Today's Topics

• Logistics
• Practice Midterm: went pretty well from our end!
 • You can still take the on-computer test and submit for a bonus point on your midterm
• We have put together a midterm information page on the website, with old midterms, study tips, and information about the exam: http://web.stanford.edu/class/cs106b/handouts/midterm.html

• Assignment four: Boggle! (now has suggested milestones)
• Memoization
• More on Structs
The Triangle Game

https://www.youtube.com/watch?v=kbKtFN71Lfs&feature=youtu.be
A classic board game with letter cubes (dice) that is not dog friendly: https://www.youtube.com/watch?v=2shOz1ZLw4c
In Boggle, you can make words starting with any letter and going to any adjacent letter (diagonals, too), but you cannot repeat a letter-cube.
Tell me and I forget. Teach me and I rememoize.*

- Xun Kuang, 300 BCE

* Some poetic license used when translating quote
• Let's look at one of the most beautiful recursive definitions:

\[F_n = F_{n-1} + F_{n-2} \]

where \(F_0 = 0, \ F_1 = 1 \)

• This definition leads to this:
Beautiful Recursion

- And this:
• And this:
Beautiful Recursion

- And this:
• And this:
• Beautiful Recursion

 And this:
• And this:
The Fibonacci Sequence

\[F_n = F_{n-1} + F_{n-2} \]

where \(F_0 = 0, \ F_1 = 1 \)

This is particularly easy to code recursively!

```c
long plainRecursiveFib(int n) {
    if(n == 0) {
        // base case
        return 0;
    } else if (n == 1) {
        // base case
        return 1;
    } else {
        // recursive case
        return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2);
    }
}
```

Let's play!

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>
The Fibonacci Sequence

What happened??

Recursive Fibonacci

![Graph showing recursive Fibonacci time in milliseconds](image)
The Fibonacci Sequence

What happened??

Recursive Fibonacci

\[y = 3E-06e^{0.4852x} \]

\[R^2 = 0.99986 \]

\[O(a^n) \]
The Fibonacci Sequence

What happened??

Recursive Fibonacci

$$y = 3E-06e^{0.4852x}$$

$$R^2 = 0.99986$$

$$O(a^n)$$

https://www.youtube.com/watch?v=qXNqEURmKtA
The Fibonacci Sequence

What happened??

Recursive Fibonacci

$y = 3E-06e^{0.4852x}$

$R^2 = 0.99986$

$O(a^n)$

https://www.youtube.com/watch?v=qXNqEURmKtA
The Fibonacci Sequence

By the way:

$$3 \times 10^{-6} e^{0.4852n} \approx O(1.62^n)$$

O(1.62^n) is technically O(2^n) because

O(1.62^n) < O(2^n)

We call this a "tighter bound," and we like round numbers, especially ones that are powers of two. :)
This is basically the reverse of binary search: we are splitting into two marginally smaller cases, not splitting into half of the problem size!
Fibonacci: There is hope!

Fibonacci sequence:

- $n = 5$
- $n = 4$
- $n = 3$
- $n = 3$
- $n = 2$
- $n = 2$
- $n = 1$
- $n = 1$
- $n = 1$
- $n = 0$
- $n = 0$
- $n = 1$
- $n = 0$
- $n = 1$
- $n = 0$
- $n = 1$
- $n = 0$

Notice! A repeat! Fib(3) is completely calculated twice.
Fibonacci: There is hope!

more repeats!
Fibonacci: There is hope!

let's leverage all the repeats!
Fibonacci: There is hope!

If we store the result of the first time we calculate a particular fib(n), we don't have to re-do it!
Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future executions, you don’t have to recalculate them.

aka

Remember what you have already done!
Memoization: Don't re-do unnecessary work!

Cache: <empty>
Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1
Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1, fib(3) = 2
Memoization: Don't re-do unnecessary work!

Don't recurse! Use the cache!

Cache: \(\text{fib}(2) = 1 \), \(\text{fib}(3) = 2 \)
Memoization: Don't re-do unnecessary work!

Cache: \(\text{fib}(2) = 1 \), \(\text{fib}(3) = 2 \)
Memoization: Don't re-do unnecessary work!

Don't recurse! Use the cache!

Cache: $\text{fib}(2) = 1, \text{fib}(3) = 2, \text{fib}(4) = 3$
Memoization: Don't re-do unnecessary work!

Don't recurse! Use the cache!

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3
Memoization: Don't re-do unnecessary work!

Cache: $\text{fib}(2) = 1$, $\text{fib}(3) = 2$, $\text{fib}(4) = 3$, $\text{fib}(5) = 5$
Memoization: Don't re-do unnecessary work!

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

done!
Memoization: Don't re-do unnecessary work!

```java
long memoizationFib(int n) {
    Map<int, long> cache;
    return memoizationFib(cache, n);
}
```

setup for helper function
Memoization: Don't re-do unnecessary work!

```java
long memoizationFib(int n) {
    Map<int, long> cache;
    return memoizationFib(cache, n);
}

long memoizationFib(Map<int, long>&cache, int n) {
    if(n == 0) {
        // base case #1
        return 0;
    } else if (n == 1) {
        // base case #2
        return 1;
    } else if(cache.containsKey(n)) {
        // base case #3
        return cache[n];
    }
    // recursive case
    long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2);
    cache[n] = result;
    return result;
}
```
Memoization: Don't re-do unnecessary work!

Complexity?

The recursive path only happens on the left...

O(n log n) if using a map for the cache

O(n) if using a *hashmap* for the cache
Fibonacci: the bigger picture

There are actually many ways to write a fibonacci function.

This is a case where the plain old iterative function works fine:

```c
long iterativeFib(int n) {
    if(n == 0) {
        return 0;
    }
    long prev0 = 0;
    long prev1 = 1;
    for (int i=n; i >= 2; i--) {
        long temp = prev0 + prev1;
        prev0 = prev1;
        prev1 = temp;
    }
    return prev1;
}
```

Recursion is used often, but not always.
Fibonacci: Okay, one more...

Another way to keep track of previously-computed values in fibonacci is through the use of a different helper function that simply passes along the previous values:

```java
long passValuesRecursiveFib(int n) {
    if (n == 0) {
        return 0;
    }
    return passValuesRecursiveFib(n, 0, 1);
}

long passValuesRecursiveFib(int n, long p0, long p1) {
    if (n == 1) {
        // base case
        return p1;
    }
    return passValuesRecursiveFib(n-1, p1, p0 + p1);
}
```
More on Structs

We have mentioned structs already -- they are useful for keeping track of related data as one type, which can get used like any other type. You can think of a struct as the Lunchable of the C++ world.

```cpp
struct Lunchable {
    string meat;
    string dessert;
    int numCrackers;
    bool hasCheese;
};

// Vector of Lunchables
Vector<Lunchable> lunchableOrder;
```
A Real Problem

Your cool picture from that trip to Europe doesn't fit on Instagram!
Bad Option #1: Crop

You got cropped out!
Bad Option #2: Resize

Stretchy castles look weird...
New Algorithm: Seam Carving!
New Algorithm: Seam Carving!

How can you change an image without changing its aspect ratio, but while retaining the important information?
We could delete an entire column of pixels, but we could also weave our way through a path of 1-pixel wide image that removes the least amount of stuff.
How to represent the path

A struct!

```cpp
struct Coord {
    int row;
    int col;
};
```

A path is just a Vector of coordinates:

```cpp
int main() {
    Coord myCord;
    myCord.row = 5;
    myCord.col = 7;
    cout << myCord.row << endl;
    Vector<Coord> path;
    return 0;
}
```
New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their neighbors.
New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that minimizes the sum of all the importances of the pixels.
New Algorithm: Seam Carving!

Vector<Coord> getSeam(Grid<double> &weight, Coord curr);
References and Advanced Reading

• References:
 • https://en.wikipedia.org/wiki/Fibonacci_number
 • https://en.wikipedia.org/wiki/Seam_carving