
Monday, May 1, 2017

Programming Abstractions

Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 6

CS 106B
Lecture 13: Classes

When it Compiles but you get a Runtime Error

Source, Reddit, Feb 8, 2017:
 https://www.reddit.com/r/ProgrammerHumor/

comments/5srs8b/
when_it_compiles_but_you_get_a_runtime_error/

https://www.reddit.com/r/ProgrammerHumor/comments/5srs8b/when_it_compiles_but_you_get_a_runtime_error/
https://www.reddit.com/r/ProgrammerHumor/comments/5srs8b/when_it_compiles_but_you_get_a_runtime_error/
https://www.reddit.com/r/ProgrammerHumor/comments/5srs8b/when_it_compiles_but_you_get_a_runtime_error/

Today's Topics
•Logistics
•Midterm Thursday, 7-9pm
•Review Session: Tonight 7-8:30pm, 420-040

•Classes
•What are they and why are they important?
•Bouncing Balls
•Decomposition
•Encapsulation
•Elements of a Class, Header files
•public / private
•Constructors / Destructors
•The keyword "this"
•The Fraction Class
•operator overloading

Midterm

•Midterm Thursday, 7-9pm
•Information: http://web.stanford.edu/class/cs106b/handouts/midterm.html

•Closed Book: You are allowed a 1 page back/front page of notes, plus the
reference sheet (also 1 page back/front).

•Will have the option of paper or laptop. Make sure your laptop is charged!
•Potential topics:
1. Functions and Pass by Reference
2. Big O
3. Use of Collections (Maps, Sets, Stacks, Queues, Vectors and Grids)
4. Recursion (Definition and Fractals)
5. Recursive Exploration and Backtracking
6. Sorting
7. Memoization

http://web.stanford.edu/class/cs106b/handouts/midterm.html

Bouncing Balls Demo

Introduction to Classes
Remember how we said that structs are the

Lunchables of the C++ world?

Structs gave us the ability to
package data into one place:

struct Lunchable {
 string meat;
 string dessert;
 int numCrackers;
 bool hasCheese;
};

But why stop at data? If we're packaging stuff up,
let's also package up the functions.

It would be really nice
if we could do this:

struct Lunchable {
 string meat;
 string dessert;
 int numCrackers;
 bool hasCheese;
 int countCalories();
};

Introduction to Classes

Guess what? We can do this! Even in structs!
(but not in C, only in C++)

Once we have the ability to package up
data and functions into one structure, we

have a super-powerful tool, called an
"object" that knows how to perform

functions on itself, and carries around its
own data.

So-called "Object Oriented Programming"
has led to the creation of most of the

large programs we use today.

Introduction to Classes

• A C++ "class" is simply a very-slightly modified struct (details to follow).
• As with structs, we sometimes want new types:

The Need for New Types

• A calendar program might want to store information
about dates, but C++ does not have a Date type.  

• A student registration system needs to store info
about students, but C++ has no Student type.  

• A music synthesizer app might want to store
information about users' accounts, but C++ has no
Instrument type.

• The only difference between a struct and a class is the notion of
defaults regarding encapsulation. A struct defaults to "public"
members, and a class defaults to "private" members.

• "Encapsulation" allows the designer of a class to build a "wall of
abstraction" around her data:

Classes: Encapsulation

main
bank

account
data

Wall of abstraction

withdraw(80)

getBalance()

transfer()

private data and functions
public functions

• The only difference between a struct and a class is the notion of
defaults regarding encapsulation. A struct defaults to "public"
members, and a class defaults to "private" members.

• "Encapsulation" allows the designer of a class to build a "wall of
abstraction" around her data:

bank
account
data

Wall of abstraction

int main() {
 BankAccount checking("Bob", 42);
 checking.withdraw(80);
 cout << checking.getBalance() << endl;
}

Classes: Encapsulation

private data and functions

• The only difference between a struct and a class is the notion of
defaults regarding encapsulation. A struct defaults to "public"
members, and a class defaults to "private" members.

• "Encapsulation" allows the designer of a class to build a "wall of
abstraction" around her data:

bank
account
data

Wall of abstraction

int main() {
 BankAccount checking("Bob", 42);
 checking.withdraw(80);
 cout << checking.getBalance() << endl;
}

withdraw(80)

error: not enough funds!

Classes: Encapsulation

private data and functions

• The only difference between a struct and a class is the notion of
defaults regarding encapsulation. A struct defaults to "public"
members, and a class defaults to "private" members.

• "Encapsulation" allows the designer of a class to build a "wall of
abstraction" around her data:

bank
account
data

Wall of abstraction

int main() {
 BankAccount checking("Bob", 42);
 checking.withdraw(80);
 cout << checking.getBalance() << endl;
}

getBalance()

42

Classes: Encapsulation

private data and functions

• The reason we want encapsulation is so that the end user of our
class does not have direct access to the data -- we, as the class
designer, control the data completely:

bank
account
data

Wall of abstraction

int main() {
 BankAccount checking("Bob", 42);
 checking.withdraw(80);
 cout << checking.getBalance() << endl;
 checking.balance = 81.2345;
}

If we allowed this, our internal class
data might not be in a state we can

handle (e.g., too many decimal places
for a monetary value)

Classes: Encapsulation

private data and functions

• So, we block the ability for someone using our class to directly
touch the data, and we force them to go through our own
functions:

bank
account
data

Wall of abstraction

int main() {
 BankAccount checking("Bob", 42);
 checking.withdraw(80);
 cout << checking.getBalance() << endl;
 checking.setBalance(81.2345);
}

Because we control the function, we
can do a check on this, and enforce

the "only two decimals" limit.

Classes: Encapsulation

private data and functions

• member variables: State inside each object.
• Also called "instance variables" or "fields"
• Declared as private
• Each object created has a copy of each field.

• member functions: Behavior that executes inside each object.
• Also called "methods"
• Each object created has a copy of each method.
• The method can interact with the data inside that object.

• constructor: Initializes new objects as they are created.
• Sets the initial state of each new object.
• Often accepts parameters for the initial state of the fields.

Elements of a Class

Class Interface Divide

Structure of a .h file
// classname.h
#pragma once

class ClassName {
 // class definition
};

This basically says, "if you see this file
more than once while compiling, ignore

it after the first time"
(so the compiler doesn't think you're

trying to define things more than once)

Structure of a .h file
// classname.h
#pragma once

class ClassName {
 // class definition
};

// classname.h
#ifndef _CLASSNAME_H
#define _CLASSNAME_H

class ClassName {
 // class definition
};

#endif

Older format, not as nice:

This basically says, "if you see this file
more than once while compiling, ignore

it after the first time"
(so the compiler doesn't think you're

trying to define things more than once)

Structure of a .h file
// in ClassName.h
class ClassName {
public:
 ClassName(parameters); // constructor
 returnType func1(parameters); // member functions
 returnType func2(parameters); // (behavior inside
 returnType func3(parameters); // each object)

private:
 type var1; // member variables
 type var2; // (data inside each object)
 type func4(); // (private function)
};

Encapsulation defined in .h
// in MyClass.h
class MyClass {
public:
 MyClass(parameters); // constructor
 returnType func1(parameters); // member functions
 returnType func2(parameters); // (behavior inside
 returnType func3(parameters); // each object)

private:
 type var1; // member variables
 type var2; // (data inside each object)
 type func4(); // (private function)
};

Any class instance can directly use anything defined as public
(but you never directly call a constructor):
 MyClass a;
 a.func1(arguments)

Encapsulation defined in .h
// in MyClass.h
class MyClass {
public:
 MyClass(parameters); // constructor
 returnType func1(parameters); // member functions
 returnType func2(parameters); // (behavior inside
 returnType func3(parameters); // each object)

private:
 type var1; // member variables
 type var2; // (data inside each object)
 type func4(); // (private function)
};

Class instances can not directly use anything defined as
private:
 MyClass a;
 a.var1 = 2; // error!

Constructors and (eventually) Destructors
// in MyClass.h
class MyClass {
public:
 MyClass(); // default constructor
 MyClass(parameters); // constructor
 ...
};

When a class instance is created, we say that it is "constructed":
string s1; // uses default constructor

string s2("I'm a string"); // uses a constructor
 // that takes 1 string parameter

string s3 = "I'm a string"; // different! (we'll get to that)

The Implicit Parameter
implicit parameter: 
The object on which a member function is called.

	 	 – During the call chris.withdraw(...),  
 the object named chris is the implicit parameter.  

	 	 – During the call aaron.withdraw(...),  
 the object named aaron is the implicit parameter.  

	 	 – The member function can refer to that object's member variables.
• We say that it executes in the context of a particular object.
• The function can refer to the data of the object it was called on.
• It behaves as if each object has its own copy of the member functions.

The Keyword This

• As in Java, C++ has a this keyword to refer to the current object.
• Syntax: this->member

• Common usage: In constructor, so parameter names can match the names of
the object's member variables:

BankAccount::BankAccount(string name, double balance) {
 this->name = name;
 this->balance = balance;
}

• this uses -> not . because it is a "pointer"; we'll discuss that later

•As an example of a class, we're going to define a Fraction class
that can deal with rational numbers directly, without decimals.

•We are going to walk through the class one step at a time,
demonstrating the various parts of a class as we go.

Let's Start an Example: The Fraction Class

The Fraction Class

• Questions we must answer about the Fraction
class:

• What data should the class hold?
• What kinds of functions (public / private) should

our class have?
• What constructors could we have?
• What is a good value for a default fraction?

class Fraction {
public:

private:

};

The Fraction Class
Class outline

Things we want class users to see

Things we want to keep hidden

from class users

class Fraction {
public:

private:

};

The Fraction Class
Class outline

What data would a
Fraction class have?

Why is it private?
 int num; // the numerator
 int denom; // the denominator

The Fraction Class

What functions
should a fraction

class be able to do?

Why are they public?

class Fraction {
public:

private:
 int num; // the numerator
 int denom; // the denominator

};

What is this???

 void add(Fraction f);
 void mult(Fraction f);
 double decimal();
 int getNum();
 int getDenom();
 friend ostream& operator<<
 (ostream& out, Fraction &frac);

The Fraction Class
class Fraction {
public:

private:
 int num; // the numerator
 int denom; // the denominator

};

 void add(Fraction f);
 void mult(Fraction f);
 double decimal();
 int getNum();
 int getDenom();
 friend ostream& operator<<
 (ostream& out, Fraction &frac);

What is this???

This defines an
operator "overload"
to make it possible

to use the "<<"
operator with cout.

We will write this
function in a few

minutes.

The Fraction Class

We need to construct the
class when it is called.

What should a "default"
fraction look like?

class Fraction {
public:

 void add(Fraction f);
 void mult(Fraction f);
 double decimal();
 int getNum();
 int getDenom();
 friend ostream& operator<<
 (ostream& out, Fraction &frac);

private:
 int num; // the numerator
 int denom; // the denominator

};

Should we let the user create
an initial fraction, e.g., 3/4?

1 / 1 probably makes the
most sense (why not 0/0?)

 Fraction();
 Fraction(int num,int denom);

The Fraction Class

Any other functions?

class Fraction {
public:
 Fraction();
 Fraction(int num,int denom);
 void add(Fraction f);
 void mult(Fraction f);
 double decimal();
 int getNum();
 int getDenom();
 friend ostream& operator<<
 (ostream& out, Fraction &frac);

private:
 int num; // the numerator
 int denom; // the denominator

};

Reduce needs gcd()...

What about reduce?
(necessary for multiplication)

 void reduce(); // reduce the fraction
 int gcd(int u, int v);

The Fraction Class

Last, but not least...

#pragma once
#include<ostream>
using namespace std;

class Fraction {
public:
 Fraction();
 Fraction(int num,int denom);
 void add(Fraction f);
 void mult(Fraction f);
 double decimal();
 int getNum();
 int getDenom();
 friend ostream& operator<<
 (ostream& out, Fraction &frac);
private:
 int num; // the numerator
 int denom; // the denominator
 void reduce(); // reduce the fraction
 int gcd(int u, int v);
};

The Fraction Class

// purpose: the default constructor
// to create a fraction of 1 / 1
// arguments: none
// return value: none
// (constructors don't return anything)

Fraction::Fraction()
{

}

Let's start writing our functions. We do
this in our fraction.cpp file, and we have
to define the class that each function
belongs to. We also cannot forget to
include our header file!

#include "fraction.h"

The default constructor is used when
someone wants to just create a default
fraction:

 Fraction frac;

The Fraction Class

// purpose: the default constructor
// to create a fraction of 1 / 1
// arguments: none
// return value: none
// (constructors don't return anything)

Fraction::Fraction()
{

}

Let's start writing our functions. We do
this in our fraction.cpp file, and we have
to define the class that each function
belongs to. We also cannot forget to
include our header file!

#include "fraction.h"

The default constructor is used when
someone wants to just create a default
fraction:

 Fraction frac;

This tells the compiler what class we are
creating. The double-colon is called the "scope

resolution operator" because it helps the
compiler resolve the scope of the function.

The Fraction Class

// purpose: the default constructor
// to create a fraction of 1 / 1
// arguments: none
// return value: none
// (constructors don't return anything)

Fraction::Fraction()
{

 num = 1;
 denom = 1;

}

Pretty simple! We are just
setting our two class
variables to default values.

Let's start writing our functions. We do
this in our fraction.cpp file, and we have
to define the class that each function
belongs to. We also cannot forget to
include our header file!

#include "fraction.h"

The default constructor is used when
someone wants to just create a default
fraction:

 Fraction frac;

The Fraction Class
// purpose: an overloaded constructor
// to create a custom fraction
// that immediately gets reduced
// arguments: an int numerator
// and an int denominator
Fraction::Fraction(int num,int denom)
{

}

We also have an overloaded constructor
that takes in two values that the user
sets. It is called as follows:

 // create a
 // 1/2 fraction
 Fraction fracA(1,2);

 // create a
 // 4/6 fraction
 Fraction fracB(4,6);

The Fraction Class
// purpose: an overloaded constructor
// to create a custom fraction
// that immediately gets reduced
// arguments: an int numerator
// and an int denominator
Fraction::Fraction(int num, int denom)
{

 this->num = num;
 this->denom = denom;

// reduce in case we were given
 // an unreduced fraction

reduce();

}

We also have an overloaded constructor
that takes in two values that the user
sets. It is called as follows:

 // create a
 // 1/2 fraction
 Fraction fracA(1,2);

 // create a
 // 4/6 fraction
 Fraction fracB(4,6);

The Fraction Class
Let's write some more functions...

 // create two fractions
 Fraction fracA(1,2);
 Fraction fracB(2,3);

 fracA.mult(fracB);
 // fracA now holds 1/3

// purpose: to multiply another fraction
// with this one with the result being
// stored in this fraction
// arguments: another Fraction
// return value: none
void Fraction::mult(Fraction other)
{

}

The Fraction Class
Let's write some more functions...

 // create two fractions
 Fraction fracA(1,2);
 Fraction fracB(2,3);

 fracA.mult(fracB);
 // fracA now holds 1/3

// purpose: to multiply another fraction
// with this one with the result being
// stored in this fraction
// arguments: another Fraction
// return value: none
void Fraction::mult(Fraction other)
{
 // multiplies a Fraction
 // with this Fraction
 num *= other.num;
 denom *= other.denom;

 // reduce the fraction
 reduce();
}

The Fraction Class
Let's write some more functions...

// get the decimal value
Fraction fracA(1,2);
double f =
fracA.decimal();
cout << f << endl;

output:
0.5

// purpose: To return a decimal
// value of our fraction
// arguments: None
// return value: the decimal
// value of this fraction
double Fraction::decimal()
{

}

The Fraction Class

// purpose: To return a decimal
// value of our fraction
// arguments: None
// return value: the decimal
// value of this fraction
double Fraction::decimal()
{
 // returns the decimal
 // value of our fraction
 return (double)num / denom;
}

Let's write some more functions...

// get the decimal value
Fraction fracA(1,2);
double f = fracA.decimal();
cout << f << endl;

output:
0.5

The Fraction Class: reduce()

void Fraction::reduce() {
 // reduce the fraction to lowest terms
 // find the greatest common divisor
 int frac_gcd = gcd(num,denom);

 // reduce by dividing num and denom
 // by the gcd
 num = num / frac_gcd;
 denom = denom / frac_gcd;
}

The Fraction Class: gcd() — nice recursive function

int Fraction::gcd(int u, int v) {
 if (v != 0) {
 return gcd(v,u%v);
 }
 else {
 return u;
 }
}

The Fraction Class: overloading <<

// purpose: To overload the << operator
// for use with cout
// arguments: a reference to an outstream and the
// fraction we are using
// return value: a reference to the outstream
ostream& operator<<(ostream& out, Fraction &frac) {
 out << frac.num << "/" << frac.denom;
 return out;
}

Yes, this syntax is a bit strange.

Basically, we are telling the compiler how to cout our Fraction.
You can do something very similar for Boggle.

References and Advanced Reading

•Advanced Reading
•Overloading the assignment operator:
•http://www.learncpp.com/cpp-tutorial/9-14-overloading-the-assignment-operator/

•Constructors and Destructors:
•http://www.cprogramming.com/tutorial/constructor_destructor_ordering.html

•References:
•https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
•http://www.cprogramming.com/tutorial/lesson12.html

http://www.learncpp.com/cpp-tutorial/9-14-overloading-the-assignment-operator/
http://www.cprogramming.com/tutorial/constructor_destructor_ordering.html
https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
http://www.cprogramming.com/tutorial/lesson12.html

Extra Slides

The Copy Constructor

The assignment overload:
Vector<int> a;
a.add(0);
a.add(1);
Vector<int> b;
b.add(8);
b = a; // a gets copied into b

The Copy Constructor
Vector<int> a;
a.add(0);
a.add(1);
a.add(1);
a.add(2);
Vector<int> b = a;
 or
Vector<int> b(a); // b gets constructed
 // with the same elements as b

This doesn't work automatically!

