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loday's lopics

o| ogistics
e Assignment 5 handout: not our best work...very sorry about that.
eBecause of our mistakes, we have a gift...
o will post a "liny Feedback questions and answers” page soon

eBinary Search Trees
o Definition
® [raversing
® [ree functions
eReferences to pointers
e Keeping Trees Balanced




Binary Search Trees

- Binary trees are frequently used In searching.
- Binary Search Trees (BSTs) have an invariant that
says the following:

For every node, X, all the items In Its left subtree
are smaller than X, and the items In the rignht tree
are larger than X.




Binary Search Trees

Binary Search Tree Not a Binary Search Tree
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Binary Search Trees

Binary Search Trees (if built well) have an average depth
on the order of logz(n): very nice!

/ \
/ \

/




Binary Search Trees

INn order to use binary search trees (BSTs), we must define and
write a few methods for them (and they are all recursive!)

Easy methods:

/ \ 1. findMin(

2. findMax()
/ \ 3. contains|()
4. add()
/ Hard method:

3 5. remove()




Binary Search Trees: findMin()

/ \
/ \

/

findMin():
Start at root, and go left until a
node doesn’t have a left child.

findMax():
Start at root, and go right until a
node doesn’'t have a right child.




Binary Search Trees: contains()

Does tree T contain X7
/ \ 1. If T 1s empty, return false
2. If T1s X, return true
3. Recursively call either T—left or
/ \ I —=right, depending on X's
relationship to T (smaller or

/ larger).




Binary Search Trees: add(value)

Similar to contains|)

/ \ 1. If T 1s empty, add at root
2. Recursively call either T —left or

/ \ I —=right, depending on X's
relationship to T (smaller or
larger).

/ 3. If node traversed to is NULL,
3 add

How do we add 5%




Binary Search Trees: remove(value)

/ \
/ \

/

3

How do we delete 47

Harder. Several possiblilities.

1.
2.

3.

Search for node (like contains)
f the node Is a leaf, just delete
(Phew)

f the node has one child,
‘bypass” (think linked-list
removal)

4. ..




Binary Search Trees: remove(value)

/ \
/ \

/

3
AN

a

How do we remove 27

4. |t a node has two children:

Replace with smallest data in the
right subtree, and recursively delete
that node (which is now empty).

Note: If the root holds the value
to remove, It Is a special case...




BSTs and Sets

Guess what? BSTs make a terrific
container for a set

Let's talk about Big O (average case)

findMin()”? Of(log n)
findMax()? Of(log n)
O(log n)

insert()” log N

remove()? Of(log n)

Great! That said...what about worst case?



Using References to Pointers

o Insert Into a binary search tree, we must update the left or right pointer of a node
when we find the position where the new node must go.

INn principle, this means that we could either

1.Perform arms-length recursion to determine if the child in the direction we will insert

IS NULL, or 6
2.Pass a reference to a pointer to the parent as we recurse.
* The second choice above IS the cleaner solution. / \
2 3

set.add(5) 1/

\
Y\ /
3\

7



Using References to Pointers

void StringSet::add(string s, Nodex &node) { node (reference)

if (node == NULL) {
node = new Node(s): 'gfi::
count++;

} else if (node->str > s) { \\\,A g/’

add(s, node->left);
} else if (node—->str < s) { 6
add(s, node->right);

} T~




Using References to Pointers

void StringSet::add(string s, Nodex &node) { node (reference)

if (node == NULL) {
node = new Node(s): 'gfi::
count++;

} else if (node->str > s) { \\\,A g/’

add(s, node->left);
} else if (node—->str < s) { 6
add(s, node->right);

} T~




Using References to Pointers

void StrlngSet add(strlng s, Nodex &node) {

if (node == NULL) { oot hode (reference)
node = new Node(s):

count++; \ ////

} else if (node->str > s) {

add(s, node—>left); 6
} else if (node->str < s) {

add(s, node->right); ‘/’/( \\\\*

4

N\
7
.




Using References to Pointers

void StringSet::add(string s, Nodex &node) {
if (node == NULL) { root node (reference)

node = new Node(s): L

count++; \\\\x ‘::EEE
L else if (node—->str > s) { 6

add(s, node->left);

} else if (node->str < s) {
add(s, node—>right); ‘/’/, \\\\*




Using References to Pointers

void StringSet::add(string s, Nodex &node) {
if (node == NULL) {
node = new Node(s):
count++;
} else if (node->str > s) {
add(s, node—>left);
} else if (node—->str < s) {
add(s, node->right);




Using References to Pointers

void StringSet::add(string s, Nodex &node) {
if (node == NULL) {
node = new Node(s):
count++;
} else if (node->str > s) {
add(s, node—>left);
} else if (node—->str < s) {
add(s, node->right);




Balancing Irees

20 Insert the following into a BST:
AN 20, 33, 50, 61, 87, 99
33

N What kind of tree to we get?

50\ We get a Linked List Tree, and O(n)
61 pbehavior :(

N
87

N

What we want is a "balanced"” tree
(that is one nice thing about heaps --
99 they're always balanced!)




Balancing Irees

Possible idea: require that the left and right subtrees In a
BST have the same height.




Balancing Irees

20
RN
18 33
/ AN
14 50

/ AN
7 61

/ But, bad balancing can .

3 also be problematic...
/

2 This tree is balanced,
obut only at the root.




Balancing Irees: What we want

Another balance condition could be to Insist that every node must have
left and right subtrees of the same height: too rigid to be useful: only
perfectly balanced trees with 2k-1 nodes would satisfy the condition (even
with the guarantee of small depth).




Balancing Irees: What we want

18
/ \
7 61
SN VAN
3 14 33 87
4 VRN \
2 20 50 99

We are going to look at one balanced BST In particular, called an
"AVL tree" You can play around with AVL trees here: https://
WWW.CS.usfca.edu/~galles/visualization/AVLtree.html



https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL lrees

An AVL tree (Adelson-Velskii and Landis) is a compromise. It is the

same as a binary search tree, except that for every node, the height

of the left and right subtrees can differ only by 1 (and an empty tree
has a height of -1).

5
/ S~ _— ’ S~
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/" N\ / /" N\
1 4 7 1 4 Not an
AVL Tree
AN
3 / 3 / 5

AVL Tree




AVL lrees

o Height Information is kept for each node, and the
height Is almost log N In practice.

o\\V\hen we Insert into an AVL tree,

5
- S~ we have to update the balancing
2 8 information back up the tree
/ \ / \\Ve also have to maintain the AVL
1 4 . oroperty — tricky! Think about

inserting 6 into the tree: this would

/ upset the balance at node 8.
3




AVL lrees: Rotation

o As it turns out, a simple modification of the tree, called
rotation, can restore the AVL property.

e After insertion, only nodes on the

T path from the insertion mignt have
2 8 their balance altered, because only
/ \ / those nodes had their subtrees
1 4 7 altered.
S/ o\\Ve will re-balance as we follow the
3 path up to the root updating

balancing information.




AVL lrees: Rotation

o\\le will call the node to be balanced, «

eBecause any node has at most two children, and a

- ~— height imbalance requires that a’s two subtrees’ heights
2 8 differ by two, there can be four violation cases:
/ \ / 1. An insertion into the left subtree of the left child of «a.
. 4 , 2. An insertion into the right subtree of the left child of a.
3. An insertion Into the left subtree of the right child of a.

/ 4, An Insertion into the right subtree of the right child of «a.




AVL lrees: Rotation

> o[-or “outside” cases (left-left, right-
TN . . Y
2 8 right), we can do a “single rotation”
/" N\ / eFor “inside” cases (left-right, right,
1 4 7

left), we have to do a more
/ complex “double rotation.”




AVL Trees: Single Rotation

kl/kz\ ceceo P /k1\k2

X

Ko violates the AVL property, as X has grown to be 2 levels deeper than Z. Y
cannot be at the same level as X because k, would have been out of
pbalance before the insertion. We would like to move X up a level and Z
down a level (fine, but not strictly necessary).




AVL Trees: Single Rotation

Visualization: Grab k1 and shake, letting gravity take hold. ks is now the

new root. In the original, ko > K1, SO Ko becomes the right child of k4. X

and Z remain as the left and right children of Ky and ko, respectively. Y
can be placed as ko's left child and satisfies all ordering requirements. £ 7




AVL Trees: Single Rotation

2 8 2 7
/N / /N
. 4 B > . A 6
/S /
3 6 3

Insertion of 6 breaks AVL property at 8 (not 5!), but is fixed
with a single rotation (we “rotate 8 right” by grabbing 7 and
hoisting it up)




AVL Trees: Single Rotation

- ~_ . > k1/ \
X /\ ....... / \ i

t Is a symmetric case for the right-subtree of the right
child. K+ Is unpalanced, so we “rotate k1 left” by
hoisting k2)




AVL Trees: Single Rotation

http://www.cs.usfca.edu/~qgalles/visualization/AVLtree.html

Insert3,2,1,4,5,6, 7



http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL Irees: Double Rotation

AVL Trees: Single Rotation doesn’t work
for right/left, left/right!

k1/k2\ ....... > /kl\kz
/ \ ........ /\Z
v e v

Subtree Y is too deep (unbalanced at ko), and the single
rotation does not make It any less deep.




AVL Irees: Double Rotation

AVL Trees: Double Rotation (can be thought of as

one complex rotation or two simple single rotations)
K>

/R
o

INnstead of three subtrees, we can view the tree as four
subtrees, connected by three nodes.




AVL Irees: Double Rotation

We can’t leave ko as root, nor can we make ki root
(@s shown before). S0, ks must become the root.




AVL Irees: Double Rotation

Double rotation also fixes an insertion into the left subtree of the right
child (ks is unbalanced, so we first rotate ks right, then we rotate kj left)




AVL Irees: Double Rotation

http://www.cs.usfca.edu/~qgalles/visualization/AVLtree.html

Before: Insert 17, 12, 23, 9, 14, 19
Insert: 20



http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL Irees: Double Rotation

http://www.cs.usfca.edu/~qgalles/visualization/AVLtree.html

Before: Insert 20, 10, 30, 5, 25, 40, 35, 45
Insert: 34



http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL Irees: Rotation Practice

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 30, 20, 10, 40, 50, 60, 70
Continuing: Insert 160, 150, 140, 130, 120, 110, 100, 80, 90



http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL Trees: How to Code

e (Coding up AVL tree rotation is straightforward, but can be tricky.
e A recursive solution Is easiest, but not too fast. However, clarity generally wins out
N this case.
e [0 Insert a new node into an AVL tree:
1. Follow normal BST insertion.
2. It the height of a subtree does not change, stop.
3. If the height does change, do an appropriate single or double rotation, anad
update heights up the tree.
4. One rotation will always suffice.

Example code can be found here: http://www.sanfoundry.com/cpp-program-
implement-avl-trees/



http://www.sanfoundry.com/cpp-program-implement-avl-trees/
http://www.sanfoundry.com/cpp-program-implement-avl-trees/

Other Balanced Tree Data Structures

Other Balanced Tree Data Structures
¢ -3 tree

e AA tree

o AVL tree

® Red-black tree

® Scapegoat tree

® Splay tree

® [reap




Coding up a Stringset

struct Node {
string str;
Node xleft:
Node *right;

// constructor for new Node
Node(string s) {

str = s;

left = NULL:

right = NULL,;

Fi
class StringSet {
}




References and Advanced Reading

 References:

eNttp://www.openbookproject.r

et/thinkcs/python/eng

ish”?2e/ch?21.html

nttps://www.tutorialspoint.co

T

/data_structures algo

rithms/binary _search tree.htm

<i/

S|

nary search tree

®
ehitps://en.wikipedia.org/wi
eNttps://www.cise.ufl.edu/~

ne

1]

0/Ccop3530/AVL -

ree-

Rotations.pdf

* Advanced Reading:

e [ree (abstract data type), Wikipedia: http://en.wikipedia.org/wiki/Tree (data structure)

eBinary Trees, Wikipedia: http://en.wikipedia.org/wiki/

Binary tree

® [ree visualizations: http://vcg.in

‘ormatik.uni-rostoc

K.de/~hs162/treeposter/poster.ntml

o\\Vikipedia article on self-balanci

Ng trees (be sure to look at all the implementations): http://

en.wikipedia.org/wiki/Self-balancing binary search tree

eRed Black Trees:

ehttps://www.cs.auckland.ac.nz/software/AlgAnim/red black.html

eYoulube AVL Trees: http://www.youtube.com/watch?v=YKt1kquKscY

o\\Vikipedia article on AVL Trees: http://en.wikipedia.org/wiki/AVL tree

eReally amazing lecture on AVL Trees: https://www.youtube.com/watch?v=FNel 18Ks\WPc



http://www.openbookproject.net/thinkcs/python/english2e/ch21.html
https://www.tutorialspoint.com/data_structures_algorithms/binary_search_tree.htm
https://en.wikipedia.org/wiki/Binary_search_tree
https://www.cise.ufl.edu/~nemo/cop3530/AVL-Tree-Rotations.pdf
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
http://www.youtube.com/watch?v=YKt1kquKScY
http://en.wikipedia.org/wiki/AVL_tree
https://www.youtube.com/watch?v=FNeL18KsWPc
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IN-Order Traversal: It i1s called "in-order" for a reason!

/ \
/ \

W
= W N -

Pseudocode:

. base case: 1f current == NULL, return
. Yecurse left

. do something with current node

. recurse right




IN-Order Traversal Example: printing

/ \
/ \ Current Node: 6

1. current not NULL
/ 2. recurse left

3
AN

a

Output:



IN-Order Traversal Example: printing

/ \
/ \ Current Node: 2

1. current not NULL
/ 2. recurse left

3
AN

a

Output:



IN-Order Traversal Example: printing

/ \
/ \ Current Node: 1

1. current not NULL
/ 2. recurse left

3
AN

a

Output:



IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ / 1. current NULL: return

Output:



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

OQutput: 1

Current Node: 1

1. currentnot NULEL
7. recurse-left

3. print "1"

4, recurse right




IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ 1. current NULL: return

3
AN

a

OQutput: 1



IN-Order Traversal Example: printing

/ \
Current Node: 1
1. eurrerthrotNULEL
- \ e
‘E FIIq:t II4 1
/ 4 reedrse-rght
3 X (function ends)

a

OQutput: 1



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Output: 1 2

Current Node: 2

1. currentnot NULEL
7. recurse-left

3. print "2"

4, recurse right




IN-Order Traversal Example: printing

/ \
/ \ Current Node: 5

1. current not NULL
/ 2. recurse left

3
AN

a

Output: 1 2



IN-Order Traversal Example: printing

/ \
/ \ Current Node: 3

1. current not NULL
/ 2. recurse left

3
AN

a

Output: 1 2



IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ 1. current NULL: return

3
/N

a

Output: 1 2



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 1 2 3

Current Node: 3

1.
2.
3.
3

eurreprtrot-NUHE
recurse+eh

orint "3"

recurse right




IN-Order Traversal Example: printing

/ \
/ \ Current Node: 4

1. current not NULL
/ 2. recurse left

3
AN

a

Qutput: 1 2 3



IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ 1. current NULL, return

3
AN

/

Qutput: 1 23

a




IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 12 34

Current Node: 4

1. currentnot NULEL
7. recurse-left

3. print "4"

4, recurse right




IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ 1. current NULL, return

3
AN

a

N\

Qutput: 12 34



IN-Order Traversal Example: printing

/ \
Current Node: 4
1. eurrerthrotNULEE
/ \ 2 recurse 1eft
St 1A
/ 4 recurseHgnt
3 , (function ends)

a

Qutput: 12 34



IN-Order Traversal Example: printing

/ \
Current Node: 3
1. eurrerthrotNULEE
/ \ 2 recurse 1eft
St 13!
/ 4 reedrse-rght
3 L (function ends)

a

Qutput: 12 34



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 12345

Current Node: 5

1. currentnot NULEL
7. recurse-left

3. print "5°"

4, recurse right




IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ \ 1. current NULL, return

3
AN

a

Qutput: 12345



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 12345

Current Node: 5

1. currentnot NULEL
7. recurseleft

3. pHA—5-

4. reedrse+gnt

(function ends)




IN-Order Traversal Example: printing

/ \
Current Node: 2
1. eurrerthrotNULEE
/ \ 2 recurse 1eft
St 10!
/ 4 recurseHgnt
3 X (function ends)

a

Qutput: 12345



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 123456

Current Node: 6

1. curentnot N
2. recurseleft

3. print "'6"

4, recurse right




IN-Order Traversal Example: printing

/ \
/ \ Current Node: 7

1. current not NULL
/ 2. recurse left

3
AN

a

Qutput: 123456



IN-Order Traversal Example: printing

/ \

/ \ Current Node: NULL
/ 1. current NULL, return

3
AN

a

Qutput: 123456



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 1234567

Current Node: 7

1. currentnot NULEL
7. recurse-left

3. print "/"

4, recurse right




IN-Order Traversal Example: printing

/ \
/ \ a
/ Current Node: NULL
2 1. current NULL, return
AN

a

Qutput: 123456



IN-Order Traversal Example: printing

/ \
Current Node: 7
1. eurrerthrotNULEE
/ \ 2 recurse 1eft
St 17!
/ 4 recurseHgnt
3 X (function ends)

a

Qutput: 1234567



IN-Order Traversal Example: printing

/ \
/ \

/

3
AN

a

Qutput: 1234567

Current Node: 6
1. currentnot NULEL
2 recurse-eft

St 1G!
4 recdrse+ant

(function ends)




