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Today's Topics

•Logistics 
• YEAH hours video: posted. 
• You must use your remaining late credits before the last assignment. 

•Introduction to Graphs 
•The wild west of the node world 
•First Graph 
•Who is your lover?



Assignment 6b: Huffman Encoding

Beautiful 

mathematically

Great 

practice with 

trees

Used in everyday 
life (both JPEG and MP3)

Sweet history
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And how does Facebook know? 

Intro to Graphs: Who do You Love?
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Only One Parent No Cycles

Tree	Definition



6



7

A graph is a mathematical structure 
for representing relationships using nodes and 

edges.

Graph	Definition

*Just like a tree without the rules
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We can have a family tree?
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Cersi
Jamie

Tywin

Tyrion

Family	Tree
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Cersi
Jamie

Tywin

Tyrion

Joffrey

Not	a	Tree
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We can have a family tree?
graph
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Cersi
Jamie

Tywin

Tyrion

Joffrey

Graphs	Don’t	Have	Roots

Catelyn

The High 
Sparrow
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Simple	Graph

struct Node{ 
string value; 
Vector<Edge *> edges; 
};

struct Edge{ 
Node * start; 
Node * end; 
};

struct Graph{ 
Set<Node *> nodes; 
Set<Edge*> edges; 
};
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Simple	Graph

struct Node{ 
string value; 
Vector<Edge *> edges; 
};

struct Edge{ 
Node * start; 
Node * end; 
};

struct Graph{ 
Set<Node *> nodes; 
Set<Edge*> edges; 
};

We allow for 
more interesting 

edges
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Simple	Graph

struct Node{ 
string value; 
Vector<Edge *> edges; 
};

struct Edge{ 
Node * start; 
Node * end; 
double weight; 
}; 

struct Graph{ 
Set<Node *> nodes; 
Set<Edge*> edges; 
}; 

We allow for 
more interesting 

edges
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A graph consists of a set of nodes connected by 
edges.

Simple	Graph
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A graph consists of a set of nodes connected by 
edges.

Simple	Graph
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A graph consists of a set of nodes connected by 
edges.

Nodes

Graph	Nodes
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A graph consists of a set of nodes connected by 
edges.

Vertices

Nodes	are	Also	Called	Vertices
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A graph consists of a set of nodes connected by 
edges.

Edges

Graph	Edges
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Directed	Graph
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CAT SAT RAT

RANMAN

MAT

CAN

Undirected	Graph
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Directed	vs	Undirected
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Weighted	graphs

weight:	Cost	associated	with	a	given	edge.	

example:	graph	of	airline	flights,	weighted	by	miles	between	cities:

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138
7174

3

1843
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337
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142
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Prerequisite	Graph
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Social	Network
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The	Internet
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The	Internet

10 to 20 billion
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CS	Assignments

50,000 unique implementations of logistic regression in CS229
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http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

Chemical	Bonds



32

Road	Map
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Corruption
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Partisanship
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Boggle
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Boggle
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Boggle
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Some	terms:
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Paths

• path:	A	path	from	vertex	a	to	b	is	a	sequence	of	edges	that	can	be	
followed	starting	from	a	to	reach	b.	
– can	be	represented	as	vertices	visited,	or	edges	taken	
– example,	one	path	from	V	to	Z:	{b,	h}	or	{V,	X,	Z}	
– What	are	two	paths	from	U	to	Y?	

• path	length:	Number	of	vertices 
or	edges	contained	in	the	path.	

• neighbor	or	adjacent:	Two	vertices 
connected	directly	by	an	edge.	
– example:	V	and	X

XU
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Z
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c
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d

f

g

h
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Loops	and	cycles

• cycle:	A	path	that	begins	and	ends	at	the	same	node.	
– example:	{b,	g,	f,	c,	a}	or	{V,	X,	Y,	W,	U,	V}.	
– example:	{c,	d,	a}	or	{U,	W,	V,	U}.	

– acyclic	graph:	One	that	does 
not	contain	any	cycles.	

• loop:	An	edge	directly	from 
a	node	to	itself.	

– Many	graphs	don't	allow	loops.
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(loop)
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Reachability,	connectedness

• reachable:	Vertex	a	is	reachable	from	b  
if	a	path	exists	from	a	to	b.	

• connected:	A	graph	is	connected	if	every  
vertex	is	reachable	from	every	other.	

• complete:	If	every	vertex	has	a	direct 
edge	to	every	other.
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Stanford	BasicGraph

The	Stanford	C++	library	includes	a	BasicGraph	class.	
– Based	on	an	older	library	class	named	Graph	

You	can	construct	a	graph	and	add	vertices/edges:	

#include	"basicgraph.h"	
...	
BasicGraph	graph;	
graph.addVertex("a");	
graph.addVertex("b");	
graph.addVertex("c");	
graph.addVertex("d");	
graph.addEdge("a",	"c");	
graph.addEdge("b",	"c");	
graph.addEdge("c",	"b");	
graph.addEdge("b",	"d");	
graph.addEdge("c",	"d");

a

c

b

d
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BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"



44

BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"
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Using	BasicGraph

The	graph	stores	a	struct	of	information	about	each	vertex/edge:	
struct	Vertex	{												struct	Edge	{	
				string	name;															Vertex*	start;	
				Set<Edge*>	edges;										Vertex*	finish;	
				double	cost;															double	weight;	
				//	other	stuff		 //	other	stuff	
};	 	 	 	 			};	

You	can	use	these	to	help	implement	graph	algorithms:	
Vertex	*	vertC	=	graph.getVertex("c");	
Edge	*	edgeAC	=	graph.getEdge("a",	"c");

a

c

b

d

3
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Our	First	Graph

A

B
C
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There	are	other	representations…
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…	this	is	the	one	we	are	going	to	use.
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Algorithms
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Who	Do	You	Love

And how does Facebook know? 
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Ego	Graph
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Maybe	I	Love	These	People?
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But	I	Actually	Love	This	Person

Your significant other

376



54

Romance	and	Dispersion

http://arxiv.org/pdf/1310.6753v1.pdf

October 2013
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Dispersion	Insight

Dispersion: The extent to which two people’s  
mutual friends are not directly connected
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 0
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 1
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 2
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 3
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 4



63

Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 5
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 5
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Dispersion

Dispersion: The extent to which two people’s  
mutual friends are not directly connected

You Testee

Mutual 
Friends

Dispersion: 5

The higher the dispersion 
between two people, the 

more likely they are 
lovers!



66

Who	Do	You	Love?

Your significant other

376
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References	and	Advanced	Reading

References: 
• Wikipedia on graphs: https://en.wikipedia.org/wiki/Graph_(discrete_mathematics) 
• Wolfram Graph theory: http://mathworld.wolfram.com/Graph.html 

Advanced Reading: 
• Facebook graph API: https://developers.facebook.com/docs/graph-api  
• Different graph lecture: https://www.youtube.com/watch?v=ylWAB6CMYiY 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
http://mathworld.wolfram.com/Graph.html
https://developers.facebook.com/docs/graph-api
https://www.youtube.com/watch?v=ylWAB6CMYiY


68

Extra	Slides

Extra Slides


