
Friday, May 19, 2017

Programming Abstractions

Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18

CS 106B
Lecture 21: Graphs

4

2

5

3

6

1

Today's Topics

•Logistics
• YEAH hours video: posted.
• You must use your remaining late credits before the last assignment.

•Introduction to Graphs
•The wild west of the node world
•First Graph
•Who is your lover?

Assignment 6b: Huffman Encoding

Beautiful

mathematically

Great

practice with

trees

Used in everyday
life (both JPEG and MP3)

Sweet history

4

And how does Facebook know?

Intro to Graphs: Who do You Love?

5

Only One Parent No Cycles

Tree	Definition

6

7

A graph is a mathematical structure
for representing relationships using nodes and

edges.

Graph	Definition

*Just like a tree without the rules

8

We can have a family tree?

9

Cersi
Jamie

Tywin

Tyrion

Family	Tree

10

Cersi
Jamie

Tywin

Tyrion

Joffrey

Not	a	Tree

11

Cersi
Jamie

Tywin

Joffrey

Not	a	Tree

Tyrion

12

We can have a family tree?
graph

13

Cersi
Jamie

Tywin

Tyrion

Joffrey

Graphs	Don’t	Have	Roots

Catelyn

The High
Sparrow

14

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;
};

struct Edge{
Node * start;
Node * end;
};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;
};

15

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;
};

struct Edge{
Node * start;
Node * end;
};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;
};

We allow for
more interesting

edges

16

Simple	Graph

struct Node{
string value;
Vector<Edge *> edges;
};

struct Edge{
Node * start;
Node * end;
double weight;
};

struct Graph{
Set<Node *> nodes;
Set<Edge*> edges;
};

We allow for
more interesting

edges

17

A graph consists of a set of nodes connected by
edges.

Simple	Graph

18

A graph consists of a set of nodes connected by
edges.

Simple	Graph

19

A graph consists of a set of nodes connected by
edges.

Nodes

Graph	Nodes

20

A graph consists of a set of nodes connected by
edges.

Vertices

Nodes	are	Also	Called	Vertices

21

A graph consists of a set of nodes connected by
edges.

Edges

Graph	Edges

22

Directed	Graph

23

CAT SAT RAT

RANMAN

MAT

CAN

Undirected	Graph

24

Directed	vs	Undirected

25

Weighted	graphs

weight:	Cost	associated	with	a	given	edge.	

example:	graph	of	airline	flights,	weighted	by	miles	between	cities:

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138
7174

3

1843

1099
1120

1233

337

2555

142

26

Prerequisite	Graph

27

Social	Network

28

The	Internet

29

The	Internet

10 to 20 billion

30

CS	Assignments

50,000 unique implementations of logistic regression in CS229

31
http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

Chemical	Bonds

32

Road	Map

33

Corruption

34

Partisanship

35

Boggle

36

Boggle

37

Boggle

38

Some	terms:

39

Paths

• path:	A	path	from	vertex	a	to	b	is	a	sequence	of	edges	that	can	be	
followed	starting	from	a	to	reach	b.	
– can	be	represented	as	vertices	visited,	or	edges	taken	
– example,	one	path	from	V	to	Z:	{b,	h}	or	{V,	X,	Z}	
– What	are	two	paths	from	U	to	Y?	

• path	length:	Number	of	vertices 
or	edges	contained	in	the	path.	

• neighbor	or	adjacent:	Two	vertices 
connected	directly	by	an	edge.	
– example:	V	and	X

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

40

Loops	and	cycles

• cycle:	A	path	that	begins	and	ends	at	the	same	node.	
– example:	{b,	g,	f,	c,	a}	or	{V,	X,	Y,	W,	U,	V}.	
– example:	{c,	d,	a}	or	{U,	W,	V,	U}.	

– acyclic	graph:	One	that	does 
not	contain	any	cycles.	

• loop:	An	edge	directly	from 
a	node	to	itself.	

– Many	graphs	don't	allow	loops.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

X

W
e

f		
(loop)

41

Reachability,	connectedness

• reachable:	Vertex	a	is	reachable	from	b  
if	a	path	exists	from	a	to	b.	

• connected:	A	graph	is	connected	if	every  
vertex	is	reachable	from	every	other.	

• complete:	If	every	vertex	has	a	direct 
edge	to	every	other.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

a

c

b

d

a

c

b

d

e

42

Stanford	BasicGraph

The	Stanford	C++	library	includes	a	BasicGraph	class.	
– Based	on	an	older	library	class	named	Graph	

You	can	construct	a	graph	and	add	vertices/edges:	

#include	"basicgraph.h"	
...	
BasicGraph	graph;	
graph.addVertex("a");	
graph.addVertex("b");	
graph.addVertex("c");	
graph.addVertex("d");	
graph.addEdge("a",	"c");	
graph.addEdge("b",	"c");	
graph.addEdge("c",	"b");	
graph.addEdge("b",	"d");	
graph.addEdge("c",	"d");

a

c

b

d

43

BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"

44

BasicGraph	members

#include	"basicgraph.h"			//	a	directed,	weighted	graph
g.addEdge(v1,	v2); adds	an	edge	between	two	vertexes
g.addVertex(name); adds	a	vertex	to	the	graph
g.clear(); removes	all	vertexes/edges	from	the	graph
g.getEdgeSet()	
g.getEdgeSet(v)

returns	all	edges,	or	all	edges	that	start	at	v, 
as	a	Set	of	pointers

g.getNeighbors(v) returns	a	set	of	all	vertices	that	v	has	an	edge	to
g.getVertex(name) returns	pointer	to	vertex	with	the	given	name
g.getVertexSet() returns	a	set	of	all	vertexes
g.isNeighbor(v1,	v2) returns	true	if	there	is	an	edge	from	vertex	v1	to	v2
g.isEmpty() returns	true	if	queue	contains	no	vertexes/edges
g.removeEdge(v1,	v2); removes	an	edge	from	the	graph
g.removeVertex(name); removes	a	vertex	from	the	graph
g.size() returns	the	number	of	vertexes	in	the	graph
g.toString() returns	a	string	such	as	"{a,	b,	c,	a	->	b}"

45

Using	BasicGraph

The	graph	stores	a	struct	of	information	about	each	vertex/edge:	
struct	Vertex	{												struct	Edge	{	
				string	name;															Vertex*	start;	
				Set<Edge*>	edges;										Vertex*	finish;	
				double	cost;															double	weight;	
				//	other	stuff		 //	other	stuff	
};	 	 	 	 			};	

You	can	use	these	to	help	implement	graph	algorithms:	
Vertex	*	vertC	=	graph.getVertex("c");	
Edge	*	edgeAC	=	graph.getEdge("a",	"c");

a

c

b

d

3

46

Our	First	Graph

A

B
C

47

There	are	other	representations…

48

…	this	is	the	one	we	are	going	to	use.

49

Algorithms

50

Who	Do	You	Love

And how does Facebook know?

51

Ego	Graph

52

Maybe	I	Love	These	People?

53

But	I	Actually	Love	This	Person

Your significant other

376

54

Romance	and	Dispersion

http://arxiv.org/pdf/1310.6753v1.pdf

October 2013

55

Dispersion	Insight

Dispersion: The extent to which two people’s
mutual friends are not directly connected

56

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

57

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

58

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 0

59

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 1

60

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 2

61

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 3

62

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 4

63

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

64

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

65

Dispersion

Dispersion: The extent to which two people’s
mutual friends are not directly connected

You Testee

Mutual
Friends

Dispersion: 5

The higher the dispersion
between two people, the

more likely they are
lovers!

66

Who	Do	You	Love?

Your significant other

376

67

References	and	Advanced	Reading

References:
• Wikipedia on graphs: https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
• Wolfram Graph theory: http://mathworld.wolfram.com/Graph.html

Advanced Reading:
• Facebook graph API: https://developers.facebook.com/docs/graph-api
• Different graph lecture: https://www.youtube.com/watch?v=ylWAB6CMYiY

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
http://mathworld.wolfram.com/Graph.html
https://developers.facebook.com/docs/graph-api
https://www.youtube.com/watch?v=ylWAB6CMYiY

68

Extra	Slides

Extra Slides

