
Lecture 22 - Hashing
CS106B - Monday, May 22, 2017

Anton Apostolatos

This presentation is based on lectures given by Chris Gregg, Chris Piech and Keith Schwarz.

Hashing
Function

int hashCode(Type elem)

Element A number!

Property 1 - Deterministic

If you pass in the same input, you will always get the same output

Property 2 - Well-Distributed

The numbers produced are as spread out as possible

Property 3 - Efficient and quick

The hash function need to run quickly

An example of why hashing is such a
powerful tool...

hashCode()

Our strategy

- Maintain a small number of collections called
buckets (think drawers)

- Find a rule that tells us where each object should go
(knowing which drawer something should go to)

- To find something, only look at the bucket assigned
to it (looking for a sock in the sock compartment)

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

Linked List or Vector

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

nice shirt ?
?

?

?

?

Don’t forget our nifty tool:

int hashCode(string elem)

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

bool OurHashSet::contains(const string& value) const {
 int preHash = hashCode(value);
 int hash = preHash % buckets.size();

 for (string elem: buckets[hash]) {
 if (elem == value) return true;
 }

 return false;
}

nice shirt ?
?

?

?

?

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

dress

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

dress

void OurHashSet::add(const string& value) {
 int preHash = hashCode(value);
 int hash = preHash % buckets.size();
 buckets[hash] += value;
} hash: 3

Buckets [0] [1] [2] [3] [4] [5]

cap graphic tee moccasins

nice shirt

kiltpolyhymnia

heels shorts

dress

void OurHashSet::add(const string& value) {
 int preHash = hashCode(value);
 int hash = preHash % buckets.size();
 buckets[hash] += value;
}

Hashing

Hashes

In range [0, numBuckets)

Use % operator

Generate a really large
(positive) number

Let’s make our own hashing function for string!

prehash =

return (prehash % numBuckets)

preHash: sum of all character values!

Experiment: I hashed 50 thousand
Wikipedia article titles into 50 thousand

buckets and looked at the number of
collisions in each bucket.

preHash: sum of all characters in string preHash: add each char weighted by 31i

Each pixel is
one bucket

prehash =

return (prehash % numBuckets)

The clear winner!

Why 31? Why not something different?

Lesson: Don’t build your own hash
function!

What’s the Big-O of these functions if our
hash function distributes well and

numBuckets ≥ numElements?

put() get() remove()

O(1) O(1) O(1)
!
!

!

!

!

!

!

!

!
put() get() remove()

put() get() remove()

Linked List O(1) O(N) O(N)

BST O(log(N)) O(log(N)) O(log(N))

Hash O(1) O(1) O(1)

Set Efficiency

Questions?

Another use of hashing…
Cybersecurity!

