
Friday, May 26, 2017

Programming Abstractions

Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18.6

CS 106B
Lecture 24: Depth First and
Breadth First Searching

At this point in the quarter…

https://i.redd.it/e5uylwsqzizx.jpg

Today's Topics

•Logistics
•Trailblazer: Will be due on the last day of classes, no late days allowed.

•There was some Tiny Feedback about an SL who "typically delays the grading
and feedback process a few weeks after the homework is due…" and "told us that
in the beginning of the quarter that we can use late credit for the Assignment 7" —
this is bad. We need to know as early as possible if SLs aren't holding IGs or
doing grading on time, or is passing on mis-information. Please email me directly,
or use sayat.me/chrisgregg to let me know these things!

•More on Graphs (and a bit on Trees)
•Depth First Search
•Breadth First Search

http://sayat.me/chrisgregg

Trailblazer
You create Google Maps!

You need to implement four
different (but related) types of
searches:

• Breadth First Search (today)
• Dijkstra (Wednesday, but will

have an additional video by
Saturday)

• A* (Wednesday, will also be
covered in additional video)

• Alternate (you must determine
algorithm)

Wikipedia

XKCD 903, Extended Mind, http://xkcd.com/903/

http://xkcd.com/903/

Wikipedia

XKCD 903, Extended Mind, http://xkcd.com/903/

When you hover over an XKCD
comic, you get an extra joke:

Wikipedia trivia: if you take
any article, click on the first
link in the article text not in
parentheses or italics, and

then repeat, you will eventually
end up at "Philosophy".

http://xkcd.com/903/

Wikipedia
Wikipedia trivia: if you take any article, click on the first link in the article text

not in parentheses or italics, and then repeat, you will eventually end up at
"Philosophy".

Is this true??

According to the Wikipedia article "Wikipedia:Getting to Philosophy" (so meta),
(https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy):

As of February 2016, 97% of all articles in Wikipedia eventually lead to the article
Philosophy.

How can we find out? We shall see!

https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy

Graph Searching
Recall from the last couple of lectures that a graph is the "wild west of trees" —
graphs relate vertices (nodes) to each other by way of edges, and they can be
directed or undirected. Take the following directed graph:

3

1

5 6

4

7

2

0 A search on this graph starts at
one vertex and attempts to find
another vertex. If it is successful,
we say there is a path from the
start to the finish vertices.

What paths are there from 0 to 6?

0☞4☞6
0☞3☞1☞6
0☞3☞7☞5☞6

Graph Searching

What paths are there from 3 to 2?

3

1

5 6

4

7

2

0

3☞1☞6☞2
3☞7☞5☞6☞2
3☞1☞0☞4☞6☞2

Graph Searching

What paths are there from 4 to 1?

3

1

5 6

4

7

2

0

None! :(

Graph Searching

We have different ways to search graphs:

• Depth First Search: From the start vertex,
explore as far as possible along each branch
before backtracking.

• Breadth First Search: From the start vertex,
explore the neighbor nodes first, before
moving to the next level neighbors.

Both methods have pros and cons — let's
explore the algorithms.

3

1

5 6

4

7

2

0

Depth First Search (DFS)
From the start vertex, explore as far as possible
along each branch before backtracking.

This is often implemented recursively. For a
graph, you must mark visited vertices, or you
might traverse forever (e.g., c☞e☞f☞c☞e…)

DFS from a to h (assuming a-z order) visits:
a☞
 b☞
 e☞
 f☞
 c☞
 i (dead end — back to c,f,e,b,a) d☞
 g☞
 h path found: a☞d☞g☞h

d

b

g

fe

h

a

i

c

Notice: not the shortest!

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 base case: if at v2, found!
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2). d

b

g

fe

h

a

i

c

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

d

b

g

fe

h

a

i

c

Vertex Visited?
a false
b false
c false
d false
e false
f false
g false
h false
i false

Let's look at dfs from h to c:

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

d

b

g

fe

h

a

i

c

Vertex Visited?
a false
b false
c false
d false
e false
f false
g false
h true
i false

Let's look at dfs from h to c:

dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

d

b

g

f

h

a

i

c

Vertex Visited?
a false
b false
c false
d false
e true
f false
g false
h true
i false

eLet's look at dfs from h to c:

dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

d

b

g

f

h i

c

Vertex Visited?
a true
b false
c false
d false
e true
f false
g false
h true
i false

e

a

Let's look at dfs from h to c:

dfs(a,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

d

g

f

h i

c

Vertex Visited?
a true
b true
c false
d false
e true
f false
g false
h true
i false

e

a b

Let's look at dfs from h to c:

dfs(b,c)
dfs(a,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

g

f

h i

c

Vertex Visited?
a true
b true
c false
d true
e true
f false
g false
h true
i false

e

a b

dLet's look at dfs from h to c:

dfs(d,c)
dfs(a,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

f

h i

c

Let's look at dfs from h to c:
Vertex Visited?

a true
b true
c false
d true
e true
f false
g true
h true
i false

e

a b

d

g

dfs(g,c)
dfs(d,c)
dfs(a,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

h i

Let's look at dfs from h to c:
Vertex Visited?

a true
b true
c false
d true
e true
f true
g true
h true
i false

e

a b

d

g

c

dfs(g,c)
dfs(d,c)
dfs(a,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map
f

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).

h i

Let's look at dfs from h to c:
Vertex Visited?

a true
b true
c false
d true
e true
f true
g true
h true
i false

e

a b

d

g

f

c

dfs(f,c)
dfs(e,c)
dfs(h,c)

call stack:

Vertex Map

Depth First Search (DFS): Recursive pseudocode
dfs from v1 to v2:
 mark v1 as visited.
 for all edges from v1 to its neighbors:
 if neighbor n is unvisited, recursively call dfs(n, v2).
Let's look at dfs from h to c:

Vertex Visited?
a true
b true
c true
d true
e true
f true
g true
h true
i false

h i

e

a b

d

g

f

c

dfs(c,c)
dfs(f,c)
dfs(e,c)
dfs(h,c)

call stack:

found!

Vertex Map

Depth First Search (DFS): Iterative pseudocode
dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

d

b

g

fe

h

a

i

c

Depth First Search (DFS): Iterative pseudocode
dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

d

b

g

fe

h

a

i

c

Let's look at dfs from h to c:

h

push h

Vertex Visited?
a false

b false

c false

d false

e false

f false

g false

h false

i false

Vertex Map

stack s

Depth First Search (DFS): Iterative pseudocode

d

b

g

fe

a

i

c

Let's look at dfs from h to c:
in while loop:
v = s.pop()

v: h

Vertex Visited?
a false

b false

c false

d false

e false

f false

g false

h true

i false

h Vertex Map

stack s

dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

Depth First Search (DFS): Iterative pseudocode

d

b

g

fe

a

i

c

Let's look at dfs from h to c:

f
e

in while loop:
 push all
 neighbors of h

Vertex Visited?
a false

b false

c false

d false

e false

f false

g false

h true

i false

h Vertex Map

stack s

dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

Depth First Search (DFS): Iterative pseudocode

d

b

g

a

i

c

Let's look at dfs from h to c:

e

Vertex Visited?
a false

b false

c false

d false

e false

f true

g false

h true

i false

in while loop:
v = s.pop()

v: f

h

f

Vertex Map

stack s

dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

e

Depth First Search (DFS): Iterative pseudocode

d

b

g

a

i

c

Let's look at dfs from h to c:

c
e

Vertex Visited?
a false

b false

c false

d false

e false

f true

g false

h true

i false

h

f

in while loop:
 push all
 neighbors of f

Vertex Map

stack s

dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

e

Depth First Search (DFS): Iterative pseudocode

d

b

g

a

i

Let's look at dfs from h to c:

c
e

Vertex Visited?
a false

b false

c false

d false

e false

f true

g false

h true

i false

in while loop:
v = s.pop()

v: c
found — stop!

h

f

c

Vertex Map

stack s

dfs from v1 to v2:
 create a stack, s
 s.push(v1)
 while s is not empty:
 v = s.pop()
 if v has not been visited:
 mark v as visited
 push all neighbors of v onto the stack

e

Depth First Search (DFS)

Both the recursive and iterative solutions to DFS
were correct, but because of the subtle
differences in recursion versus using a stack, they
traverse the nodes in a different order.

For the h to c example, the iterative solution
happened to be faster, but for different graphs the
recursive solution may have been faster.

To retrieve the DFS path found, pass a collection
parameter to each cell (if recursive) and choose-
explore-unchoose (our old friend, recursive
backtracking!)

d

b

g

e

a

ih

f

c

Depth First Search (DFS)

DFS is guaranteed to find a path if one exists.

It is not guaranteed to find the best or shortest path! (i.e., it is not optimal)

d

b

g

e

a

ih

f

c

h i

e

a b

d

g

f

c

vs.

Breadth First Search (BFS)
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors.

This isn't easy to implement recursively. The
iterative algorithm is very similar to the DFS
iterative, except that we use a queue.

BFS from a to i (assuming a-z order) visits:
a a☞b
 a☞d
 a☞e
 a☞d☞g
 a☞d☞h
 a☞e☞f
 a☞d☞h☞i

d

b

g

fe

h

a

i

c

}neighbors of a

} neighbors of d

path: a☞d☞h☞i
Notice: the shortest!

Breadth First Search (BFS): Iterative pseudocode

d

b

g

fe

h

a

i

c

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 if v is the end vertex, we can stop after adding to the
 current path.
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

Breadth First Search (BFS): Iterative pseudocode

d

b

g

fe

h

a

i

c

Let's look at bfs from a to i:
front

aqueue:

Vector<Vertex *> startPath
startPath.add(a)
q.enqueue(startPath)

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v as last element
 enqueue new path onto q

Visited Set:
(empty)

Breadth First Search (BFS): Iterative pseudocode

d

b

g

fe

i

c

front
ae ad abqueue:

in while loop:
 curPath = q.dequeue() (path is a)
 v = last element in curPath (v is a)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

a

h

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

Visited Set:
a

Breadth First Search (BFS): Iterative pseudocode

d

g

fe

i

c

front
abe ae adqueue:

a

h

b

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is ab)
 v = last element in curPath (v is b)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b

Breadth First Search (BFS): Iterative pseudocode

g

fe

i

c

front
adh adg abe ae

queue:

a

h

b

d

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is ad)
 v = last element in curPath (v is d)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d

Breadth First Search (BFS): Iterative pseudocode

g

f

i

c

front
aef adh adg abe

queue:

a

h

b

d e

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is ae)
 v = last element in curPath (v is e)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e

Breadth First Search (BFS): Iterative pseudocode

g

f

i

c

front
abef aef adh adg

queue:

a

h

b

d e

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is abe)
 v = last element in curPath (v is e)
 mark v as visited (already been marked)
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e

Breadth First Search (BFS): Iterative pseudocode

f

i

c

front
adgh abef aef adh

queue:

a

h

b

d e

g

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is adg)
 v = last element in curPath (v is g)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
g

Breadth First Search (BFS): Iterative pseudocode

f

i

c

front
adhi adhf adgh abef aef

queue:

a b

d e

g h

Let's look at bfs from a to i:

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is adh)
 v = last element in curPath (v is h)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
h

Breadth First Search (BFS): Iterative pseudocode

i

c

front
aefc adhi adhf adgh abef

queue:

a b

d e

g h

Let's look at bfs from a to i:

f

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is aef)
 v = last element in curPath (v is f)
 mark v as visited
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
f

Breadth First Search (BFS): Iterative pseudocode

i

c

front
abefc aefc adhi adhf adgh

queue:

a b

d e

g h

Let's look at bfs from a to i:

f

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is abef)
 v = last element in curPath (v is f)
 mark v as visited (already been marked)
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
f

Breadth First Search (BFS): Iterative pseudocode

i

c

front
adghi abefc aefc adhi adhf

queue:

a b

d e

g h

Let's look at bfs from a to i:

f

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is adgh)
 v = last element in curPath (v is h)
 mark v as visited (already been marked)
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
f
h

Breadth First Search (BFS): Iterative pseudocode

i

c

front
adhfc adghi abefc aefc adhi

queue:

a b

d e

g h

Let's look at bfs from a to i:

f

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is adhf)
 v = last element in curPath (v is f)
 mark v as visited (already been marked)
 enqueue all unvisited neighbor paths onto q

Visited Set:
a
b
d
e
f
h

Breadth First Search (BFS): Iterative pseudocode

i

c

front
adhfc adghi abefc aefc adhi

queue:

a b

d e

g h

Let's look at bfs from a to i:

f

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 for each unvisited neighbor of v:
 make new path with v's neighbor as last element
 enqueue new path onto q

in while loop:
 curPath = q.dequeue() (path is adhi)
 v = last element in curPath (v is i)
 found!

Visited Set:
a
b
d
e
f
h
i

Wikipedia: Getting to Philosophy

So I downloaded Wikipedia…

It turns out that you can download Wikipedia, but it is > 10 Terabytes (!)
uncompressed. The reason Wikipedia asks you for money every so often is
because they have lots of fast computers with lots of memory, and this is
expensive (so donate!)

But, the Internet is just a graph...so, Wikipedia pages are just a graph...let's just
do the searching by taking advantage of this: download pages as we need them.

Wikipedia: Getting to Philosophy

What kind of search is the "getting to philosophy" algorithm?
"Clicking on the first lowercase link in the main text of a Wikipedia article, and
then repeating the process for subsequent articles, usually eventually gets one
to the Philosophy article."

This is a depth-first search! To determine if a Wikipedia article will get to
Philosophy, we just select the first link each time. If we ever have to select a
second link (or if a first-link refers to a visited vertex), then that article doesn't get
to Philosophy.

Wikipedia: Getting to Philosophy

We can also perform a Breadth First Search, as well. How would this change our
search?

A BFS would look at all links on a page, then all links for each link on the page,
etc. This has the potential of taking a long time, but it will find a shortest path.

References and Advanced Reading

•References:
•Depth First Search, Wikipedia: https://en.wikipedia.org/wiki/Depth-first_search
•Breadth First Search, Wikipedia: https://en.wikipedia.org/wiki/Breadth-first_search

•Advanced Reading:
•Visualizations:
• https://www.cs.usfca.edu/~galles/visualization/DFS.html
• https://www.cs.usfca.edu/~galles/visualization/BFS.html

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html

Extra Slides

Breadth First Search (BFS): Tree searching
A Breadth First Search on a tree will produce a "level order traversal":

a

b

d e g

if

c

h

Breadth First Search: a☞b☞c☞d☞e☞g☞h☞f☞i
This is necessary if we want to print the tree to the screen in a

pretty way, such that it retains its tree-like structure.

