CS 1068

| ecture 24: Depth First and
Breadth First Searching

Friday, May 26, 2017

Programming Abstractions
Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 18.6

At this point In the quarter...

COP 3331 Exam 1

2 Short Answer Questions

= S caftware development,
1t [10 point S] Name and describe the (ive key phases of softwal 1

¥4
4 / Y) &
et (01 e S R)h i il I

https://I.redd.it/eduylwsqgzizx.jpg

loday's lopics

o| ogistics
e [railblazer: Will be due on the last day of classes, no late days allowed.

* [here was some Tiny Feedback about an SL who "“typically delays the grading
and feedback process a few weeks after the homework is due..." and "told us that
In the beginning of the quarter that we can use late credit for the Assignment 7" —
this is bad. We need to know as early as possible if SLs aren't holding IGs or

doing grading on time, or Is passing on mis-information. Please email me directly,
or use sayat.me/chrisgregg to let me know these things!

e\lore on Graphs (and a bit on Trees)
eDepth First Search
eBreadth First Search

http://sayat.me/chrisgregg

Trallblazer

CS 1068 Trailblazer YOU Crea'te Goog‘e MapS!

Dijkstra s | Delay: == | () Run | | @ Clear

You need to implement four
different (but related) types of
searches:

00— DO,

o)
o &
0000 @O

fEmae kL e e SO SN ES 5+ Breadth First Search (today)

frefe g g el URAL « =i T3 S9N - Dikstra (Wednesday, but wil

e e o P g wle, e TN have an additional video by
Saturday)

- A" (Wednesday, will also be

ey covered in additional video)

Moamemeeam 1, - Alternate (you must determine

A § OO RS - N <
%per.srreetr‘c‘lap coNgibutors b 3 a Donat

World: | map-stanford.txt v | |l Lload | (136,471) a‘ g O rlt h m)

0O 0Qp0

9

o]
3 5 Crd;@-lo};%%"nx‘,‘;,\v T o e

Wikipedia

O 0 O/SeaRx PLUe VG G;)GE-< WHIPEDIA
L

<« ->» c f:w"‘l‘q.vr}/.ﬁ’\t?/ﬁtﬂ-ﬂwj

et |

MIKE |979: I REPLACED MY SPARK PLUGS AND
NOW MY CAR 15 RUNNING WEIRD.

—

0 0 O/FRkoR Y +\]

< > GI o ,.u:;kg,.r;/wi/ﬁw‘-—""’,‘ @j\&

g"’. WIKPEDIA HAS A PROBLEM

TRY WAITING A FEx MINUTES AND RELOADING
“.Jw('c-“;:n.-i\ (CANT CONTACT THE DATABASE SERVER:
T UNKNOWN ERROR, (10.0.0.247))
O00 Messace Wity Mike 1979
MIKE 1979: I REPLACED MY SPARK PLUGS AND
NOW MY CAR 1S RUNNING WEIRD.

ME: \HAT IS A SPARK PLUG ?7?

ME: HELP
ME: WHAT Is A CAR??

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FOINTS,

XKCD 903, Extended Mind, http://xkcd.com/903/

http://xkcd.com/903/

Wikipedia

-

P
- e
A vea,
N g vy S b SN
-
Sy 7 A —_— -
. N o e
e e g | W e
~~£~_4. _m",b§ p—

O 0 O/earx PLe \(rEusk MK‘:';’!K,‘PEDLQ XF\ |
R e T — | L
& lr‘ft&.t ”9-«.4,\:[lw— “wﬁﬂ]&_jl
(A) PLUG
FC % PARK 9, A
v, T T S ——
*ﬁ.ﬂ oo :: _::::,: .‘:5._ :._:..:‘ ———— = |
| Elﬁ\i{ﬂﬁ ~~~JOD0 Messace wim_Mixe 1979

|l MIKE1979: I REPLACED MY SPORK PLUGS AND
....... -l NOW MY 0AR IS RUNNING WEIRD.
SRR T ME: THE SPPRK GAP MIGHT BE OFF.
|| ME YOU CAN CHECK WITH A FEELER GRUGE.
MIKE 1979: WHAT SHOULD THE GAP RE?
ME: USUALLY RETWEEN 0.035" AND 0.070"

{
o v 1STORY]

L - —
g o ZCYVIER BUT IT DEPENDS ON THE ENGINE.
L a ¥ i ~~ A S
Al aanad .
4'-:1’,-.
e A a B! AP o8
B ey o Y .-,-;':::"
~ '.'(: S’JE

W Sy adewd, WMawwy Povwy ' N
W o it P\;\ /

0 0 O/FRRoR Y +\ *
< > C'[L:F:f):g..,‘/wi/j,i,,‘v,,uj -]@]&
553 WIKIPEDIA HAS A PROBLEM

oW —
rsh IRY WAITING A FEW MINUTES AND RELOADING
WiipenlA (CANT CONTACT THE DATABASE SERVER:

?

u
l

3)
—

——— —

UNKNOWN ERROR, (10.0.0.2472))

r
O0D0 Messace Wity Mike 1979
MIKE |979: I REPLACED MY SPARK PLUGS AND
NOW MY AR 1S RUNNING WEIRD.

ME: WJHAT IS A SPARK PLUG 77
ME: HELP
ME: WHAT IS A CAR??

|

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FOINTS,

XKCD 903, Extended Mind, http://xkcd.com/903/

When you hover over an XKCD
comic, you get an extra joke:

Wikipedia trivia: if you take
any article, click on the first
link In the article text not In
parentheses or italics, and
then repeat, you will eventually
end up at "Philosophy".

http://xkcd.com/903/

Wikipedia

Wikipedia trivia: if you take any article, click on the first link in the article text
not in parentheses or italics, and then repeat, you will eventually end up at
"Philosophy".

IS this true??

According to the Wikipedia article "Wikipedia:Getting to Philosophy" (so meta),
(https://en.wikipedia.org/wiki/Wikipedia:Getting to Philosophy):

AS of February 2016, 97% of all articles in Wikipedia eventually lead to the article
Philosophy.

How can we find out”? We shall see!

https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy

Graph Searching

Recall from the last couple of lectures that a graph is the "wild west of trees” —

graphs relate vertices (nodes) to each other by way of edges, and they can be
directed or undirected. Take the following directed graph:

o
oo
) 9&9 o

A search on this graph starts at
one vertex and attempts to find
another vertex. If it Is successful,

we say there Is a path from the
start to the finish vertices.

What paths are there from O to 67
0456
(&3] =6

0375056

Graph Searching

What paths are there from 3 to 27 3@] &6 IS 2
J&]EHE s 2
a 3@] @ (&4 @ 6 @2

Graph Searching

What paths are there from 4 to 17

None! :(

Graph Searching

We have different ways to search graphs:

Depth First Search: From the start vertex,
explore as far as possible along each branch
pbefore backtracking.

Breadth First Search: From the start vertex,
explore the neighbor nodes first, before
moving to the next level neighbors.

Both methods have pros and cons — let's
explore the algorithms.

Depth First Search (DFS)

From the start vertex, explore as far as possible
along each branch before backtracking.

This is often implemented recursively. For a
graph, you must mark visited vertices, or you
might traverse forever (e.g., ceesfercse, .)

DFES from a to h (assuming a-z order) visits:

de |(dead end — backto c,f.e,nb,a) Notice: not the shortest!

N path found: as~dw-gwsh 1/

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
base case: If at vo, found!

mark v+ as visited. e Q Q
for all edges from v+ to its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2).

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ to Its neighbors: %ﬁ G

if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to C: @ °’
Vertex Visited? ‘

false Q
false
false
false
false
false
false
false
false

Q

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ to Its neighbors: %ﬁ G

if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢: Vertex Map

Vertex Visited?
false
false
false
false
false
false
false
true
false

Q

call stack:

— JQ -~ O O O T

dfs(h,c)

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ to Its neighbors: %Q G

if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢: Vertex Map

Vertex Visited?
false
false
false
false
true
false
false
true
false

Q

call stack:

dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢: Vertex Map

Vertex Visited?
true
false
false
false
true
false
false
true
false

Q

call stack:

dfs(a,c)
dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?

call stack: 2 true
b true

C false

d false

e true

dfs(b,c) f false
dfs(a,c) g false
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?

call stack: 2 true
b true

C false

d true

e true

dfs(d,c) f false
dfs(a,c) g false
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from vi to vo:
mark vi as visited.
for all edges from v+ 1o Its neighbors:

if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?

call stack: 2 true
b true

C false

d true

dfs(g,c) e true
dfs(d,c) f false
dfs(a,c) g true
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?

call stack: 2 true
b true

C false

d true

el#s(g;e) e true
etste;€) f true
efs{a;€) g true
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢: Vertex Map

Vertex Visited?
true
true
false
true
true
true
true
true
false

Q

call stack:

dfs(f,c)
dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from vi to vo:
mark vi as visited.
for all edges from v+ 1o Its neighbors:

if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?
call stack: 2 true
b true
C true
d true
e true
\,| dfs(c,c) f true
O dfs(f.c) ; rue
(% dfs(e,c) H true
dfs(h,c) | false

Depth First Search (DFS): Iterative pseudocode

dfs from vq to vo:
create a stack, s e

sS.push(v4) Q Q
while s IS not empty: %
V = 8.pop)
if v has not been visited: a e G
mark v as visited ‘

push all neighbors of v onto the stack Q

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s is not empty:

V = S.pop() ’ e
if v has not been visited: 4

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
d false

push N e false

f false

g false

h false

h | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo: e @ Q
create a stack, s %

3.push(v4)

while s Is not empty: G G G
V = S.pop() ‘ ’ e anaee
if v has not been visited: Q @ 4
h :

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

v = S.pop() f false

g false

vin h true

| false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo: e @ Q
create a stack, s %

3.push(v4)

while s Iis not empty: G G G
V= S-pOpO ‘ ’ LI
if v has not been visited: @ @ 2
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

- gtacks b false
Let's look at dfs from h to c: c false
d false

N while loop: e false
oush all f false
neighbors of n 9 false

f h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s Is not empty:

(4) e —@
pond Sy FE—
if v has not been visited: @ @ 4
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

V= S.pop(f true

g false

vil h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s Is not empty:

(4) e —@
pond Sy FE—
if v has not been visited: @ @ 4
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

e stack s T T T b false
Let's look at dfs from h to c: c false
d false

N while loop: e false
oush all f true
neighbors of f 9 false

C h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo:

create a stack, s e @
3.push(v4)

while s is not empty: G

o —&
V = S.pop() ’ e
if v has not been visited: : @ 4

C

. @ Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

v =5.pop() f true

g false

V. C C h true

found — stop! e i false

Depth First Search (DFS)

Both the recursive and iterative solutions to DFS
were correct, but because of the subtle
differences In recursion versus using a stack, they
traverse the nodes in a different order.

For the h to ¢ example, the iterative solution
happened to be faster, but for different graphs the
recursive solution may have been faster.

To retrieve the DFS path found, pass a collection
parameter to each cell (if recursive) and choose-

explore-unchoose (our old friend, recursive
backtracking!)

Depth First Search (DFS)

DFS is guaranteed to find a path if one exists.

t iIs not guaranteed to find the best or shortest path! (i.e., it is not optimal)

Breadth First Search (BFS)

From the start vertex, explore the neighbor
nodes first, before moving to the next level
neighbors.

This isn't easy to implement recursively. The
terative algorithm is very similar to the DFS
terative, except that we use a queue.

BFS from a to | (assuming a-z order) visits:

d g b -
as=d rneighbors of a
ase -
A~ dsmgH

aﬂi@:d@]p (neighbors of d Notice: the shortest!
Pl

A Jrshes path: a=dw-hee| q/

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 tO vo:

create a queue of paths (a vector), g
g.engqueue(v1 path) e Q Q
while g Is not empty and vz Is not yet visited: %

path = g.dequeue() a

v = last element In path

mark v as visited ‘

f v IS the end vertex, we can stop after adding to the Q
current path.

for each unvisited neighbor of v:

make new path with v's neighbor as last element
engueue new path onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:
create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
mark v as visiteo
for each unvisited neighbor of v:
make new path with v as last element
engueue new path onto ©

-- : Visited Set:
Let's look at bfs from a to i: (empty)

queue:

Vector<\Vertex *> startPath
startPath.add(a)
g.engueue(startPath)

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:

create a queue of paths (a vector), g Q G
g.engqueue(vs path) %
while g is not empty and vz is not yet visited:

path = g.dequeug() Q

v = last element in path
mark v as visiteo g H

d

for each unvisited neighbor of v:
make new path with v's neighor as last element - ~— ~— ~—

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I; a

queue: front
| ae ad ab
N while loop:

curPath = g.dequeue() (path is a)
v = last element in curPath (v is a)

mark v as visited
enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:
create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeue)

v = last element in path
mark v as visiteo

for each unvisited neighbor of v:
make new path with v's neighor as last element - ~— ~— ~—

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I a

queue: front D
| abe ae ad

N while loop:
curPath = g.dequeue() (path is ab)
v = last element in curPath (v is b)
mark v as visited
enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:
create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeue)

v = last element in path
mark v as visiteo

for each unvisited neighbor of v:
make new path with v's neighor as last element - ~— ~— ~—

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I a

Lele: front D
X | adh adg abe ae d

N while loop:
curPath = g.dequeue() (path is ad)
v = last element in curPath (v is d)
mark v as visited
enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:
create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeue)

v = last element in path
mark v as visiteo

for each unvisited neighbor of v:
make new path with v's neighor as last element - ~— ~— ~—

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I a

e front D
ueue:
X aef adh adg abe d
. . e
N while loop:

curPath = g.dequeue() (path is ae)
v = last element in curPath (v is)

mark v as visited
enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 10 vo:
create a queue of paths (a vector), g

g.engqueue(vs path)

while g is not empty and vz is not yet visited:

path = g.dequeug()

v = last element in path
mark v as visitec
for each unvisited neighbor of v:

make new path with v's neighbor as last element

engueue new path onto g

Let's look at bfs from a to I

queue:

abef aef

front
adh adg

N while loop:

curPath = g.dequeue() (path is abe)

v = last element in curPath (v
mark v as visited (already bee
engqueue all unvisited neighbo

S €)

N marked)

- paths onto g

Visited Set:

®© O T O

Breadth First Search (BFS): Iterative pseudocode

bfs from v4 tO vo:
create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeue)
v = last element in path
mark v as visiteo
for each unvisited neighbor of v:
make new path with v's neighbor as last element - ~ ~— ~—
enqueue new path onto g :

-- : Visited Set:
Let's look at bfs from a to I: a
| front D
HHSUS. adgh abef aef adh d
N while loop: ©
9

curPath = g.dequeue() (path is adg)

v = last element in curPath (v is Q)

mark v as visited

enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v+ to vo:

create a queue of paths (a vector), g

g.engqueue(vs path)

while g is not empty and vz is not yet visited:

path = g.dequeug()

v = last element in path

mark v as visitec

for each unvisited neighbor of v:
make new path with v's neighbor as last element

engueue new path onto g

Let's look at bfs from a to I

queue:

front
adhi adhf adgh abef aef

N while loop:
curPath = g.deqg

v = |last element
mark v as visited

N Cur

ueue() (path is adh)

Path (v is h)

enqueue all unvisited neighbor paths onto o

Visited Set:

> O O O O

Breadth First Search (BFS): Iterative pseudocode

bfs from v+ to vo:

create a queue of paths (a vector), g

g.engqueue(vs path)

while g is not empty and vz is not yet visited:

path = g.dequeug()

v = last element in path

mark v as visitec

for each unvisited neighbor of v:
make new path with v's neighbor as last element

d

engueue new path onto g

-- : Visited Set:
Let's look at bfs from a to I

a%b o

queue:

front
aefc adhi adhf adgh abef

N while loop:
curPath = g.deqg

v = |last element
mark v as visited

N Cur

ueue() (path is aef)

Path (v is 1)

enqueue all unvisited neighbor paths onto o

d

o
d
S
f

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 10 vo:
create a queue of paths (a vector), g

g.engueue(v1 pat
while g is not em

)
oty and vz Is not yet visited:

path = g.dequeug()

v = last element in path

mark v as visited

for each unvisited neighbor of v:

make new pat

engueue new path onto g

-- : Visited Set:
Let's look at bfs from a to I

queue:

N with v's neighbor as last element

a%b o

d

abefc aefc adhi adhf adgh

front

N while loop:

curPa

V =
malr
enag

KV as Vvis

h = g.deq
ast element in curPath (v
ited (already bee

Jeue all L

nvisited neighbo

ueue() (path is abef)
. s f

N marked)

- paths onto g

d

o
d
S
f

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 to v2!
create a queue of

g.engqueue(vs path)
while g Is not empty and vz Is not yet visited:
path = g.dequeug()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

paths (a vector), g

d

engueue new path onto g

-- : Visited Set:
Let's look at bfs from a to I

a%b o

queue:

front
adghi abefc aefc adhi adhf

N while loop:

curPath = g.dequeue() (path is adgh)
v = last element in curPath (v is h)

mark v as vis

enqueue all L

ted (already been marked)

nvisited neighbor paths onto g

D —+~ O O O o

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 to v2!
create a queue of

g.engqueue(vs path)
while g Is not empty and vz Is not yet visited:
path = g.dequeug()
v = last element in path
mark v as visited
for each unvisited neighbor of v:
make new path with v's neighbor as last element

paths (a vector), g

d

engueue new path onto g

-- : Visited Set:
Let's look at bfs from a to I

a%b o

queue:

front
adhfc adghi abefc aefc adhi

N while loop:

curPath = g.dequeue() (path is adhf)
v = last element in curPath (v is f)

mark v as vis

enqueue all L

ted (already been marked)

nvisited neighbor paths onto g

D —+~ O O O o

Breadth First Search (BFS): Iterative pseudocode

bfs from v+ to vo:

create a queue of paths (a vector), g
g.engqueue(vs path)
while g is not em

path = g.dequeug()

v = last element
mark v as visitec
for each unvisited neighbor of v:
make new path
engueue new

oty and vz Is not yet visited:

N path

d

with v's neighbor as last element

nath onto g

a%b o

-- : Visited Set:
Let's look at bfs from a to I

queue:

N whi
Da-

Ccur

le

front
adhfc adghi abefc aefc adhi

00p:

h = g.deq

v = last element
found!

ueue() (path is adhi)

n curPath (v is 1)

— 3O —+~ O O O O

Wikipedia: Getting to Philosophy

I/ \’7)‘ ~®

‘-.‘
> 4 N}
, w \ :
Ve
—
. (I
\ \\ Ve

S~ _ .

WIKIPEDIA

The Free Encyclopedia

So | downloaded Wikipedia...

't turns out that you can download Wikipedia, but it is > 10 Terabytes (!)
uncompressed. [he reason Wikipedia asks you for money every so often Is

pbecause they have lots of fast computers with lots of memory, and this is
expensive (so donate!)

But, the Internet is just a graph...so, Wikipedia pages are just a graph...let's just
do the searching by taking advantage of this: download pages as we need them{s= ./

Wikipedia: Getting to Philosophy

723
; ‘
(2

N,
o
QU I\

-\.
/) /
1 t
>

o

Lo A

WIKIPEDIA
The Free Encyclopedia

<D

What kind of search is the "getting to philosophy" algorithm??
"Clicking on the first lowercase link in the main text of a Wikipedia article, and
then repeating the process for subsequent articles, usually eventually gets one
to the Philosophy article.”

This Is a depth-first search! To determine if a Wikipedia article will get to

Philosophy, we just select the first [ink each time. It we ever have to select a
second link (or if a first-link refers to a visited vertex), then that article doesn't get
to Philosophy.

Wikipedia: Getting to Philosophy

[~ - ‘_/—\ /

< rD .

WIKIPEDIA

The Free Encyclopedia

We can also perform a Breadth First Search, as well. How would this change our
search”

A BFS would look at all links on a page, then all links for each link on the page,
etc. This has the potential of taking a long time, but it will find a shortest path.

,"- ,.- -.\‘. E—
,'. T h J I_
f L |
111
.Il L‘. 4‘1 l' ‘ [
‘.\-_ —— :." A - "_ ™

References and Advanced Reading

* References:
eDepth First Search, Wikipedia: https://en.wikipedia.org/wiki/Depth-first search
eBreadth First Search, Wikipedia: https://en.wikipedia.org/wiki/Breadth-first search

* Advanced Reading:
e\/Isualizations:
e Nhttps://www.cs.usfca.edu/~galles/visualization/DES.htm
e Nhitps://www.cs.usfca.edu/~galles/visualization/BFS.htm

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html

%
O,
O
)
q
e
>
L1

Breadth First Search (BFS): Tree searching

A Breadth First Search on a tree will produce a "level order traversal”:

Breadth First Search: awbwce-de-esgre-he-foe

This Is necessary If we want to print the tree to the screen in a
oretty way, such that it retains its tree-like structure.

