CS 1068

L ecture 27: Inheritance
and Polymorphism in C++

Monday, June 5, 2017

Community Chest
A

Cody

world I &2
TOUR I\,

YOU INHERIT
$100

Asam

Programming Abstractions
Spring 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 19

loday's lopics

®| Ogistics

e[-inal Exam prep online: http://web.stanford.edu/class/cs106b/handouts/final.html
onal exam Is on Friday, June 9th at 8:30am.

eCourse evaluations now open on Axess

e|nheritance and Polymorphism in C

http://web.stanford.edu/class/cs106b/handouts/final.html

INnheritance In C++

Inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

‘ Elephant l

Horse

a way to Indicate that classes are related
a way to share code between two or more related

classes (a hierarch
(y) German Labrador‘ |Clydesdale| |Palomino|
‘ Shepherd l |Retriever

One class can extend another, absorbing its data/behavior.
superclass (base class): Parent class that is being extended.
subclass (derived class): Child class that inherits from the superclass.
Subclass gets a copy of every field and method from superclass. .
Subclass can add its own behavior, and/or change inherited behavi

GODbject Hierarchy

The Stanford C++ library contains a hierarchy of graphical objects based on a

common base class named GObject.
GArc, GCompound, GImage, GLabel, GLine, GOval,
GPolygon, GRect, G3DRect, GRoundRect, ...

GOb ject

GArc GImage GLabel GLine GOval GRect GPolygon GCompound

G3DRect GRoundRect

GObject Members

GObject defines the state and behavior common to all shapes:

contains(x, V)
getColor(), setColor(color)
getHeight(), getWidth(), getLocation(), setLocation(x, y)

getX(), getY(), setX(x), setY(y), move(dx, dy)
setVisible(visible)
toString()

The subclasses add state and behavior unique to them:

GLabel: GLine: GPolygon:
- get/setFont - get/setStartPoint - addEdge
- get/setlLabel - get/setEndPoint - addVertex

PESTITAN
" '%\% XL _?:v‘,‘;\«'./_}}.
° S i T\ w\
130 e =\EL
o= LN =]
\ =\ ‘3!?'\./'“".
N\ & N7 *
= Y ¥ 45

Example: Employees

Imagine a company with the following employee regulations:
All employees work 40 hours / week.

Employees make $40,000 per year plus $500 for each year worked,
except for lawyers who get twice the usual pay,
and programmers who get the same $40k base but $2000 for each year worked.

Employees have 2 weeks of paid vacation days per vear,
except for programmers who get an extra week (a total of 3).
Employees should use a yellow form to apply for leave,
except for programmers who use a pink form.

Each type of employee has some unique behavior:
Lawyers know how to sue.
Programmers know how to write code.
-+ Secretaries know how to take dictation.
Legal Secretaries know how to take dictation and how to file legal briefs.

// Employee.h

class Employee {
public:
Employee(string name, int years);

virtual
virtual
virtual
virtual
virtual
virtual

private:
string myName;
int myYears,;

&

int hours() const;

string name() const;

double salary() const;

int vacationDays() const;
string vacationForm() const;
int years() const;

Employee Class

// Employee.cpp
Employee: :Employee(string name, int years) A
myName = name;

myYears = years;

}

int Employee::hours() const {

}

return 40;

string Employee::name() const {

}

return myName;

double Employee::salary() const {

}

return 40000.0 + (500 x myYears);

int Employee::vacationDays() const {

}

string Employee::vacationForm() const A{

}

return 10;

return "yellow";

int Employee::years() const {

}

return myYears,;

EXercise: Employees

Exercise: Implement classes Lawyer and Programmer.
Lawyer
A Lawyer remembers what law school he/she went to.
Lawyers make twice as much salary as normal employees.
Lawyers know how to sue people (unigue behavior).

Programmer
Programmers make the same base salary as normal employees, but
they earn a bonus of $2k/year instead of $500/year.
Programmers fill out the pink form rather than yellow for vacations.
Programmers get 3 weeks of vacation rather than 2.
Programmers know how to write code (unigue behavior).

Overriding

override: [0 replace a superclass's member function by writing a new
version of that function in a subclass.

virtual function: One that is allowed to be overridden.
Must be declared with virtual keyword in superclass.

// Employee.h // Programmer.h

virtual string vacationForm(); virtual string vacationForm();

// Employee.cpp // Programmer.cpp

string Employee: :vacationForm() { string Programmer::vacationForm() {
return "yellow"; return "pink"; // override!

} }

f you "override" a non-virtual function, it actually just puts a second copy of that

function in the subclass, which can be confusing later.

*Virtual has some subtleties. For example, destructors in inheritance hierarchies should always be
declared virtual or else memory may not get cleaned up properly; ugh.

Calling the Superclass Constructor

SubclassName: :SubclassName(params) : SuperclassName(params) {
statements;
}

To call a superclass constructor from subclass constructor, use an initialization
list, with a colon after the constructor declaration.

Example:
Lawyer::Lawyer(string name, string lawSchool, int years)
Employee(name, years) {
// calls Employee constructor first
my lLawSchool = lawSchool;

Calling the Superclass Member

SuperclassName: :memberName(params)

To call a superclass overridden member from subclass member.

Example:

double Lawyer::salary() { // paid twice as much
return Employee::salary() x 2;

}

Notes:
Subclass cannot access private members of the superclass.
You only need to use this syntax when the superclass's memlber has been
overridden.
f you just want to call one member from another, even if that member came

from the superclass, you don't need to write Superclass: : .

#pragma once

#1include "Employee.h"
#include <string>

class Lawyer :

public:

| awyer.n

PDF: http://web.star

ford.edu/class/cs106b//lectures/2 7 -Inheritance/code/

Iala

eritancePolymorphismExamples.pdf

One typo: cross out line 195

public Employee A
// I now have an hours, name, salary, etc. method. yay!

Lawyer(string name, string lawSchool, int years);
virtual double salary() const;
void sue(string person);

private:

string myLawSchool;

b

http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/code/InheritancePolymorphismExamples.pdf
http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/code/InheritancePolymorphismExamples.pdf

L awyer.cpp

#1nclude "Lawyer.h"

// call the constructor of Employee superclass?
Lawyer::Lawyer(string name, string lawSchool, int years)
Employee(name, years) {
myLawSchool = lawSchool;
}

// overriding: replace version from Employee class
double Lawyer::salary() const {

return Employee::salary() x 2;
}

void Lawyer::sue(string person) {
cout << "See you 1n court, " << person << endl;
}

Perils of Inheritance (i.e., think before you inherit!)

Consider the following places you might use inheritance:

- class Po1nt3D extends Po1nt2D and adds z-coordinate Rectungle Square
- class Square extends Rectang le (or vice versa?) » — bl — 4—bly
- class SortedVector extends Vector, keeps it in sorted order T

B

What's wrong with these examples? Is inheritance good here”?
Point2D's distance() function is wrong for 3D points
Rectang le supports operations a Square shouldn't (e.g. setWidth)
SortedVector might confuse client; they call insert at an index, then
check that index, and the element they inserted Is elsewhere!

b2

0 1 2 3 4 5

Z3 19| E44 1S3 0 A

Private Inheritance

class Name : private SuperclassName { ...

private inheritance: Copies code from superclass but does not publicly

advertise that your class extends that superclass.

- (Good for cases where you want to inherit another class's code, but you
don't want outside clients to be able to randomly call It.

- Example: Have Po1nt3D privately extend Po1nt2D and add z-coordinate
functionality.

- Example: Have SortedVector privately extend Vector and add only the
public members it feels are appropriate (e.g., nNo 1nsert).

FPure Virtual Functions

virtual returntype name(params) = O;

pure virtual function: Declared in superclass's .h file and set to O (null). An
absent function that has not been iImplemented.

Must be implemented by any subclass, or it cannot be used.

A way of forcing subclasses to add certain important behavior.

class Employee {

virtual void work() = @; // every employee does
// some kind of work

F;

FYI: In Java, this is called an abstract method.

Multiple Inheritance

class Name : public Superclass1, public Superclass2, ...

multiple inheritance: \When one subclass has multiple superclasses.
Forbidden in many OO languages (e.g. Java) but allowed in C++.
Convenient because it allows code sharing from multiple sources.
Can be confusing or buggy, e.g. when both superclasses define a member
with the same name.

istream ostream

Example: The C++ 1/0O % ;
streams use multiple
Inheritance:

istringstream ifstream jostream ofstream ostringstream

T

fstream

Polymorphism

polymorphism: Ablility for the same code to be used
with different types of objects and behave differently
with each.
lemplates provide compile-time polymorphism.
INheritance provides run-time polymorphism.

[dea: Client code can call a method on different kinds
of objects, and the resulting behavior will be different.

Circle

draw()
erase()

draw()
erase()

Polymorphism and Pointers

A pointer of type [can point to any subclass of I.

Employeex edna = new Lawyer("Edna'", "Harvard", 5);
Secretaryx steve = new LegalSecretary('"Steve", 2);
World*x world new WorldMap('"map-stanford.txt");

When a member function is called on edna, It behaves as a Lawyer.
(This Is because the employee functions are declared virtual.)

+ You can not call any Lawyer-only members on edna (e.g. sue).
You can not call any LegalSecretary-only members on steve (e.g.
fileLegalBriefs).

Polymorphism Example

You can use the object's extra functionality by casting.

Employeex edna = new Lawyer("Edna", "Harvard", 5);

edna—->vacationDays(); // ok
edna—>sue("Stuart"); // compiler error
((Lawyerx) edna)->sue("Stuart"); // ok

You should not cast a pointer to something that it is not.
't will compile, but the code will crash (or behave unpredictably) when
you try to run it

Employeex paul = new Programmer("Paul", 3);

paul->code(); // compiler error
((Programmerx) paul)->code(); // ok

((Lawyerx) paul)->sue("Marty"); // crash!

Polymorphism Mystery

class Snow {
public:
virtual void method2() {
cout << "Snow 2" << endl;
I3

virtual void method3() {
cout << "Snow 3" << endl:
¥

b

class Rain : public Snow {
public:
virtual void methodl1() {
cout << "Rain 1" << endl;
s

virtual void method2() {
cout << "Rain 2" << endl;
¥

b

class Sleet : public Snow {
public:
virtual void method2() {
cout << "Sleet 2" << endl;
Snow: :method2();

}
virtual void method3() {

cout << "Sleet 3" << endl;
I3
b

class Fog : public Sleet {
public:
virtual void methodl() {
cout << "Fog 1" << endl;
I3

virtual void method3() {
cout << "Fog 3" << endl;
I3

b

Diagramming classes

Draw a diagram of the

classes from top thodat
(superclass) to bottom. method3

\ SNow 2
) Snow 3

Rain 1 Sleet 2 / Snow 2
methodl1() - method2()
method2 () Rain 2 method3() Sleet 3
(method3()) Snow 3
Fog 1

method1() i

method3 () Fog 3

Mystery Problem

Snowx varl = new Sleet();
varl->method2(); // What's the output?

To find the behavior/output of calls like the one above:

1. Look at the variable's type.
f that type does not have that member: COMPILER ERROR.

2. EXxecute the memober.
Since the member s virtual: behave like the object's type,
not like the variable's type.

Example 1
variable

Q: What is the result of

f?
the following call’: ethod2() gncwg
method3 () NOW
Snowx varl = new Sleet():
varl->method2(); object
A S 2 RaiN 1 Sleet 2 / Snow 2
i method1() - method2 ()
Now method2() RSalnnOsv % method3 () Sleet 3
: (method3())

B. Rain 2
C. Sleet 2

Snow 2 method1()

method2 ()

D. COMPILER ERROR method3()

Example T
variable

Q: What is the result of

f?
the following call’: ethod2() gncwé
method3() NOwW
Snowx varl = new Sleet():
varl->method2(): object
Rain Sleet 2 / Snow 2
i method1() - method2 ()
A. Show 2 o) ngnosvcs e hods () Sleet 3
. (method3())
B. Rain 2
C. Sleet 2
SnOW 2 method1()

method2 ()

D. COMPILER ERROR method3()

Example 2
variable

Q: What is the result of

f?
the following call’: ethod2() gncwg
method3 () Now

Snowx var2 = new Rain():

var2->method1():

A. Show 1 ObJeCt method1() qRaaIPnE method2 ()
method2 () Snow 3 method3()
: (method3())
B. Rain 1
C. Show 1
Rain 1 method1()

method2 ()

D. COMPILER ERROR method3()

Sleet 2 / Snow 2
Sleet 3

Example 2
variable

Q: What is the result of

f?
the following call’: ethod2() gncwé
method3 () Now

Snowx var2 = new Rain():

var2->method1():

A. Show 1 ObJeCt method1() qRaaIPnE method2 ()
method2 () Snow 3 method3()
: (method3())
B. Rain 1
C. Show 1
Rain 1 method1()

method2 ()

D. COMPILER ERROR method3()

Sleet 2 / Snow 2
Sleet 3

Example 3
variable

Q: What is the result of

f?
the following call’: ethod2() gncwg
method3 () Now

Snowx var3 = new Rain():

var3—>method2():

object 2ain Sleet 2 / Snow 2
i method1() - method2 ()
A. Snow 2 method2 () RSalnnOsvS method3() Sleet 3
. (method3())
B. Rain 2
C. Sleet 2
Snow 2 method1()

method2 ()

D. COMPILER ERROR method3()

Example 3
variable

Q: What is the result of

f?
the following call’: ethod2() gncwé
method3 () Now

Snowx var3 = new Rain():

var3—>method2():

object 2ain Sleet 2 / Snow 2
i method1() - method2 ()
A. Snow 2 method2 () RSalnnOsvS method3() Sleet 3
: (method3())
B. Raln 2
C. Sleet 2
Snow 2 method1()

method2 ()

D. COMPILER ERROR method3()

Vlystery with type cast

Snowx vard = new Rain():
((Rain %) var4—>methodl(); // What's the output?

f the mystery problem has a type cast, then:

1. Look at the cast type.
f that type does not have the method: COMPILER ERROR.

(Note: If the object's type was not equal to or a subclass of
the cast type, the code would CRASH / have unpredictable
behavior.)

2. Execute the membper.
Since the member Is virtual: behave like the object's type,
not like the variable's type.

Example 4

Q: What is the result of variable
the following call? _
' NOW
Snowx var4 = new Rain(); method2() o 3

method3 ()

((Rain x) var4)-—>methodl():

cast

hiect Rain Sleet 2 / Snow 2

opDl|ect| methodl(- method2()

A. Show 1 J methodZ() Rain 2 nethod3 () Sleet 3
(method3()) Snow 3

B. Rain 1

C.Sleet 1

method1 ()
method2 ()

D. COMPILER ERROR method3()

Example 4

Q: What is the result of variable
the following call? _
' NOW
Snowx var4 = new Rain(); method2() o 3

method3 ()

((Rain x) var4)-—>methodl():

cast

hiect Rain Sleet 2 / Snow 2

opDl|ect| methodl(- method2()

A. Show 1 J methodZ() Rain 2 nethod3 () Sleet 3
(method3()) Snow 3

B. Rain 1

C.Sleet 1

method1 ()
method2 ()

D. COMPILER ERROR method3()

Example 5

Q: What is the result of variable
the following call? _
Snowk var5 = new Fog(); nethod2() Snow 3

method3 ()

((Sleet %) var5)->methodl():

cast

RaiN 1 Sleet 2 / Snow 2

A. Snow 1 ettt T Rana [netho0 T gt
(method3()) Snow 3
B. Sleet 1
Fog object
C. Fog 1 Fog 1

methodl1() ,;ﬁyaﬁ
method2 () Sleet 2 / S

Example 5

Q: What is the result of variable
the following call? _
Snowk var5 = new Fog(); nethod2() Snow 3

method3 ()

((Sleet %) var5)->methodl():

cast

RaiN 1 Sleet 2 / Snow 2

method1() - method2 ()

A. SnOW 1 method2 () Rain 2 method3 () Sleet 3
(method3 ()) SNow 3

B. Sleet 1

C. Fog 1

method1 ()
method2 ()

D. COMPILER ERROR method3()

Example 6

Suppose we add the following variable
method to base class Snow:
virtual void method4() A nethod2() Snow 2

method3 () SNow 3

cout << "Snow 4" << endl;
method2 () :

) Seat |00

Sleet 2 / Snow 2

Rain 1
i » methodl() - method2 ()
What is the output”: Tethod2 () Rain2 | = hod3() Sleet 3
Snowx varé = new Sleet(); (method3()) Snow 3

varé—>method4():

Answer? .
(Sleet's method? is used because
Snow 4 method1()

Sleet 2 method 4 and method?2 are virtual) method2/()
Snow 2 method3()

Example 7

What is the output of the variable
following call?

Snowx var7 = new Sleet(): nethod2 () Snow 2
' method3 () SNow 3
((Rainx) var7)—-—>methodl1():

Rain 1 Sleet 2 / Snow 2
B. Sleet 1 uipetil Rain2 | method2 ()T g0 5
(method3()) Snow 3

C. Fog 1
D. COMPILER ERROR

methodl ()

method2 ()

E. CRASH / UNDEFINED method3 ()

References and Advanced Reading

* References:
eC++ Inheritance: https://www.tutorialspoint.com/cplusplus/cpp inheritance.ntm
*C++ Polymorphism: https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

* Advanced Reading:
eNttp.//stackoverflow.com/questions/5854581/polymorphism-in-c
ettps://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm
http://stackoverflow.com/questions/5854581/polymorphism-in-c
https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

