
Friday, April 14, 2017

Programming Abstractions

Spring 2017

Stanford University 

Computer Science Department


Lecturer: Chris Gregg


reading:

Programming Abstractions in C++, Chapter 5.4-5.6

CS 106B 
Lecture 6: Sets and Maps

b

d

c

a

e

f

B

D

C

A

E

F

Map:

a

e
m i

k g

d
b

n

h

c

Set:



Today's Topics
•Logistics: 
•Tiny Feedback: some responses! 
•Not enough motivation for why we care about ADTs: good point! 
•More interactive classes: I'll see what I can do! 
•KEY pages (           ) 

•Late credits change: up to two calendar days equals one late credit. You get 
three automatic late credits per quarter. 

•the "const" qualifier 
•Postfix refresher 
•Structs (details will come later!) 
•Sets 
•Maps



const

•When we pass variables by reference into a function, we do so for 
a couple of reasons: 
•We don't want to make copies of big objects 
•As it turns out (thanks to the person who put a note on sayat.me/chrisgregg who 
reminded me to mention this), C++ has new functionality that allows us to return 
big objects in some cases without lots of copying (but the Stanford libraries don't 
have that functionality yet) 

and / or 

•We need to modify an object in place (we will do this a great deal 
with recursion)



const

•What if we want to pass a variable by reference, but we know we 
won't modify it?  

•We could just have self-control and not modify it. 

•Or, we could make the compiler keep us honest. To do this, we 
use the keyword const



const

•const allows a programmer to tell the compiler that the object 
passed cannot be changed in the function. E.g., 

void printLifeGrid(Grid<char> const &lifeGrid); 

•There is no need for the printLifeGrid() function to change 
the lifeGrid, but we would rather pass the grid by reference to avoid 
big copies.



const

•We use const to tell the compiler to give us an error if we do try to 
modify a const-declared variable in a function. 

•This also tells someone reading our code that we are guaranteeing 
that the object will be the same when the function ends as when it 
began.



Postfix (RPN) Refresher

What does the following postfix (RPN) computation equal?
10 3 5 * 9 4 - / +

Feel free to use our stack algorithm: 

Read the input and push numbers onto a stack until you reach an operator.  
When you see an operator, apply the operator to the two numbers that are popped from the stack. 
Push the resulting value back onto the stack.  
When the input is complete, the value left on the stack is the result.

Answer: 13
How would our stack-based RPN know that we had made an error, e.g., 

10 3 5 * - + 9 4 -

Answer: the stack is empty when we try to pop two operands



Brief Introduction to Structs

/* 
 * Solves a quadratic equation ax^2 + bx + c = 0, 
 * storing the results in output parameters root1 and root2.  
 * Assumes that the given equation has two real roots. 
 */ 
void quadratic(double a, double b, double c, 
               double& root1, double& root2) { 
    double d = sqrt(b * b - 4 * a * c); 
    root1 = (-b + d) / (2 * a); 
    root2 = (-b - d) / (2 * a); 
}

Recall that in C++, we can only return one value from a function. We have 
overcome this in the past by using references:



Brief Introduction to Structs

struct Roots { 
    double root1; 
    double root2; 
};

• There is another way we can return variables by packaging them up in a 
type called a "struct" 

• Structs are a way to define a new type for us to use. 
• Once we define a struct, we can use that type anywhere we would normally 

use another type (e.g., an int, double, string, etc.)

new type name

struct variables, 
referred to with dot 

notation

don't forget the semicolon



Brief Introduction to Structs
• Let's re-write our quadratic equation solver to use the Roots struct.



Brief Introduction to Structs

struct Roots { 
    double root1; 
    double root2; 
}; 

/* 
 * Solves a quadratic equation ax^2 + bx + c = 0, 
 * storing the results in output parameters root1 and root2. 
 * Assumes that the given equation has two real roots. 
 */ 
Roots quadratic(double a, double b, double c) { 
    Roots roots; 
    double d = sqrt(b * b - 4 * a * c); 
    roots.root1 = (-b + d) / (2 * a); 
    roots.root2 = (-b - d) / (2 * a); 
    return roots; 
}

• Let's re-write our quadratic equation solver to use the Roots struct.



Sets and Maps

Sets Maps
• Collection of elements 

with no duplicates.
• Collection of key/value pairs 
• The key is used to find its 

associated value.
"the" "if"

"down" "of"
"to""from"

"he"
"them"
"in"

"by"
"Chris"

"Jenny"
"Mehran"

"867-5309"

"Anton"

"866-2233"
"685-6232"
"488-0312"



Sets

•set: a collection of elements with no duplicates.

"the" "if"
"down" "of"

"to""from"

"he"
"them"
"in"

"by"

Operations include add, contains, and remove, and 
they are all fast 

Sets do not have indexes

set.contains("to")

set.contains("be")

true

false



Sets: Simple Example

Set<string> friends; 
friends.add("chris"); 
friends.add("anton"); 
cout << friends.contains("voldemort") << endl; 
for(string person : friends) { 
    cout << person << endl; 
}



Set Essentials

int set.size()
   Returns the number of elements in the set.
void set.add(value)
   Adds the new value to the set (ignores it if the value is already in the set)
bool set.contains(value)
   Returns true if the value is in the set, false otherwise.
void set.remove(value)
   Removes the value if present in the set. Does not return the value.
bool set.isEmpty()
   Returns true if the set is empty, false otherwise.

Sets also have other helpful methods. See the online docs 
for more.



Looping Over a Set

for(type currElem : set) { 
    // process elements one at a time 
}

for(int i=0; i < set.size(); i++) { 
    // does not work, no index! 
    cout << set[i]; 
}

can't use a normal for loop and get each element [i]



Types of Sets

Set HashSet
Iterate over elements in 

sorted order 

Really fast! 
O(log n) per 
retrieval

Implemented using a 
"binary search tree"

Iterate over elements in 
unsorted (jumbled) order 

Really, 
ridiculously fast! 
O(1) per retrieval

Implemented using a 
"hash table"



Set Operands

s1 == s2
    true if the sets contain exactly the same elements
s1 != s2
    true if the sets don't contain the same elements
s1 + s2
    returns the union of s1 and s2 (all elements in both)
s1 * s2
    returns intersection of s1 and s2 (elements must be in both)
s1 - s2
    returns difference of s1, s2 (elements in s1 but not s2)

Sets can be compared, combined, etc. 



Count Unique Words



Maps

map: A collection of pairs (k, v), sometimes called key/value pairs, where v 
can be found quickly if you know k.

a.k.a. dictionary, associative array, hash

a generalization of an array, where the "indexes" need not be ints.

"Chris"
"Jenny"

"Mehran"

"867-5309"

"Anton"

"866-2233"
"685-6232"

"488-0312"



Using Maps

A map allows you to get from one half of a pair to the other.

store an association from "Jenny" to "867-5309"

Map

//     key         value
// m["Jenny"] = "867-5309"; or
m.put("Jenny", "867-5309");

What is Jenny's number?
// string ph = m["Jenny"] or
string ph = m.get("Jenny")
"206-685-2181"

Map



Maps are Everywhere

key = title, value = article
key: 

"Yosemite National Park" 

    value:

key: 
"Mariana Trench" 

    value:



Creating Maps

Requires 2 type parameters: one for keys, one for values.
// maps from string keys to integer values 
Map<string, int> votes; 

// maps from double keys to Vector<int> values 
Map<string, Vector<string>> friendMap;



Map Methods



Map Example

Map<string, string> wiki; 

// adds name / text pair to dataset 
wiki.put(“Neopalpa donaldtrumpi”, articleHTML);



Map Example

Map<string, string> wiki; 

// adds name / text pair to dataset 
wiki.put(“Neopalpa donaldtrumpi”, articleHTML);

// returns corresponding articleHTML 
cout << wiki.get(“Yosemite National Park”);



Map Example

Map<string, string> wiki; 

// adds name / text pair to dataset 
wiki.put(“Neopalpa donaldtrumpi”, articleHTML);

// returns corresponding articleHTML 
cout << wiki.get(“Yosemite National Park”);

// removes the article 
wiki.remove(“Britain in the E.U.”);



Types of Maps

Map HashMap
Iterate over elements in 

sorted order 

Really fast! 
O(log n) per 
retrieval

Implemented using a 
"binary search tree"

Iterate over elements in 
unsorted (jumbled) order 

Really, 
ridiculously fast! 
O(1) per retrieval

Implemented using a 
"hash table"



Map Example: Tallying Votes

count votes: 
// (M)ilk, (S)tokes, (R)ogers 
    "MMMRMSSMSSMMMMMRRMMMMRRRMMM"

key: "M" "S" "R"

value: 17 7 3

"M"
"S"

"R"

17
7

3

*In 1976 Harvey Milk became the first openly gay elected official in the US



Tallying Words



Looping Over a Map

    Map<string, double> gpa = load(); 
    for (string name : gpa) { 
        cout << name << "'s GPA is "; 
        cout << gpa[name] << endl; 
    }

*The order is unpredictable in a HashMap



Recap
•Structs 
•Used to define a type that holds multiple other types. 
•Useful for returning more than one value, or keeping things together (e.g., a 
coordinate could be an x,y and it is nice to keep them together: 
struct coordinate {
    double x,y;
}

• Uses dot notation to access elements. 

•Sets: 
•Container that holds non-duplicate elements 
•O(log n) behavior per element access (HashSet: O(1), but unordered) 

•Map: 
•Container that relates keys to values. 
•Needs two types when defining: Map<keyType, valueType> 
•O(log n) behavior per element access (HashMap: O(1), but unordered)



References and Advanced Reading

•References: 
•Stanford Set reference: http://stanford.edu/~stepp/cppdoc/Set-class.html  
•Stanford Map reference: stanford.edu/~stepp/cppdoc/Map-class.html 
•const: http://www.cprogramming.com/tutorial/const_correctness.html  

•Advanced Reading: 
•Hashing: https://en.wikipedia.org/wiki/Hash_table  
•Relational Databases: https://en.wikipedia.org/wiki/Relational_database  (especially 
idecies) 

•const: http://duramecho.com/ComputerInformation/WhyHowCppConst.html  



Extra Slides


