
Thursday, July 13, 2017

Programming Abstractions

Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Section 10.2

CS 106B
Lecture 11:
Sorting

Today's Topics
•Logistics
•Midterm Review -- Monday (details on Piazza)
•Midterm: Next Wednesday/Thursday, in class
•Test BlueBook before coming to class — a good way is to do the practice exams

•Sorting
•Insertion Sort
•Selection Sort
•Merge Sort
•Quicksort
•Other sorts you might want to look at:
•Radix Sort
•Shell Sort
•Tim Sort
•Heap Sort (we will cover heaps later in the course)
•Bogosort

Sorting!

• In general, sorting consists of putting elements
into a particular order, most often the order is
numerical or lexicographical (i.e., alphabetic).

• In order for a list to be sorted, it must:
• be in nondecreasing order (each element

must be no smaller than the previous
element)

• be a permutation of the input

Sorting!

• Sorting is a well-researched subject, although
new algorithms do arise (see Timsort, from
2002)

• Fundamentally, comparison sorts at best have
a complexity of O(n log n).

• We also need to consider the space
complexity: some sorts can be done in place,
meaning the sorting does not take extra
memory. This can be an important factor when
choosing a sorting algorithm! (must sort)

Sorting!
• In-place sorting can be “stable”

or “unstable”: a stable sort
retains the order of elements
with the same key, from the
original unsorted list to the final,
sorted, list

• There are some phenomenal
online sorting demonstrations:
see the “Sorting Algorithm
Animations” website:

• http://www.sorting-algorithms.com, or the animation site at: http://
www.cs.usfca.edu/~galles/visualization/ComparisonSort.html or the cool
“15 sorts in 6 minutes” video on YouTube: https://www.youtube.com/
watch?v=kPRA0W1kECg

http://www.sorting-algorithms.com
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg

Sorts

• There are many, many different ways to sort elements in a list.
We will look at the following:

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Insertion Sort

Insertion sort: orders a list of values by repetitively inserting a particular value into a
sorted subset of the list

More specifically:
– consider the first item to be a sorted sublist of length 1
– insert second item into sorted sublist, shifting first item if needed
– insert third item into sorted sublist, shifting items 1-2 as needed
– ...
– repeat until all values have been inserted into their proper positions

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

9 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

5

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 9 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 9)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 9 10 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

8 8 < 10, so 10 moves right. Then 8 < 9, so move 9 right

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 10)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 12 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

11

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 11 12 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 12)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

2 Lots of shifting!

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

2 5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Okay

Insertion Sort

Complexity:
Worst performance:
Best performance:

2 5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Okay

O(n2) (why? -- see extra slide!)
O(n)

–Average performance: O(n2) (but very fast for small arrays!)
–Worst case space complexity: O(n) total (plus one for swapping)

Insertion Sort Code

// Rearranges the elements of v into sorted order.
void insertionSort(Vector<int>& v) {
 for (int i = 1; i < v.size(); i++) {
 int temp = v[i];
 // slide elements right to make room for v[i]
 int j = i;
 while (j >= 1 && v[j - 1] > temp) {
 v[j] = v[j - 1];
 j--;
 }
 v[j] = temp;
 }
}

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Selection Sort

• Selection Sort is another in-place sort that has a simple algorithm:
• Find the smallest item in the list, and exchange it with the left-most

unsorted element.
• Repeat the process from the first unsorted element.

• See animation at: http://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

2 5 10 8 12 11 14 9 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

(no swap necessary)

Selection Sort

• Complexity:
• Worst performance: O(n2)
• Best performance: O(n2)
• Average performance: O(n2)
• Worst case space complexity: O(n) total (plus one for swapping)

2 5 10 8 12 11 14 9 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

etc.

Selection Sort Code
// Rearranges elements of v into sorted order
// using selection sort algorithm
void selectionSort(Vector<int>& v) {
 for (int i = 0; i < v.size() - 1; i++) {
 // find index of smallest remaining value
 int min = i;
 for (int j = i + 1; j < v.size(); j++) {
 if (v[j] < v[min]) {
 min = j;
 }
 }
 // swap smallest value to proper place, v[i]
 if (i != min) {
 int temp = v[i];
 v[i] = v[min];
 v[min] = temp;
 }
 }
}

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Merge Sort

• Merge Sort is another comparison-based sorting algorithm and it is a
divide-and-conquer sort.

• Merge Sort can be coded recursively
• In essence, you are merging sorted lists, e.g.,
• 	L1 = {3,5,11} L2 = {1,8,10}
• 	merge(L1,L2)={1,3,5,8,10,11}

Merge Sort

• Merging two sorted lists is easy:

3 5 11L1:

Result:

1 8 10L2:

Merge Sort

• Merging two sorted lists is easy:

3 5 11L1:

Result:

8 10L2:

1

Merge Sort

• Merging two sorted lists is easy:

5 11L1:

Result:

8 10L2:

1 3

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

8 10L2:

1 3 5

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

10L2:

1 3 5 8

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

L2:

1 3 5 8 10

Merge Sort

• Merging two sorted lists is easy:

L1:

Result:

L2:

1 3 5 8 10 11

Merge Sort

• Full algorithm:
• Divide the unsorted list into n sublists, each containing

1 element (a list of 1 element is considered sorted).
• Repeatedly merge sublists to produce new sorted

sublists until there is only 1 sublist remaining. This will
be the sorted list.

Merge Sort Code (Recursive!)
// Rearranges the elements of v into sorted order using
// the merge sort algorithm.
void mergeSort(Vector<int> &vec) {
 int n = vec.size();
 if (n <= 1) return;
 Vector<int> v1;
 Vector<int> v2;
 for (int i=0; i < n; i++) {
 if (i < n / 2) {
 v1.add(vec[i]);
 } else {
 v2.add(vec[i]);
 }
 }
 mergeSort(v1);
 mergeSort(v2);
 vec.clear();
 merge(vec, v1, v2);
}

Merge Halves Code
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
 int n1 = v1.size();
 int n2 = v2.size();
 int p1 = 0;
 int p2 = 0;
 while (p1 < n1 && p2 < n2) {
 if (v1[p1] < v2[p2]) {
 vec.add(v1[p1++]);
 } else {
 vec.add(v2[p2++]);
 }
 }
 while (p1 < n1) {
 vec.add(v1[p1++]);
 }
 while (p2 < n2) {
 vec.add(v2[p2++]);
 }
}

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 4 086

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0

99 6 86 15 58 35 4 086

Merge Sort: Full Example

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

6 15 86 99 0 4 35 58 86

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

0 4 6 15 35 58 86 86 99

6 15 86 99 0 4 35 58 86

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Space Complexity

0 4 6 15 35 58 86 86 99

• Merge Sort can be completed in place, but
• It takes more time because elements may have to be

shifted often
• It can also use “double storage” with a temporary array.

• This is fast, because no elements need to be shifted
• It takes double the memory, which makes it inefficient

for in-memory sorts.

Merge Sort: Time Complexity

0 4 6 15 35 58 86 86 99

• The Double Memory merge sort has a worst-case time
complexity of O(n log n) (this is great!)

• Best case is also O(n log n)
• Average case is O(n log n)

• Note: We would like you to understand this analysis (and
know the outcomes above), but it is not something we
will expect you to reinvent on the midterm.

Is our Merge Sort "stable"?

• A "stable sort" keeps the original order of the same
values in the same order. E.g.,

99 6 86 15 58 35 86 4 0
this 86 will end up

ahead of this 86

Is our Merge Sort "stable"?

• A "stable sort" keeps the original order of the same
values in the same order. E.g.,

99 6 86 15 58 35 86 4 0
this 86 will end up

ahead of this 86

0 4 6 15 35 58 86 86 99

Who cares? It's just a number!

Is our Merge Sort "stable"?

What if we were sorting linked vectors? What if we first
sorted by alpha below, then by num...

num 99 6 86 15 58 35 86 4 0
alpha A B C D E F G H I

num 0 4 6 15 35 58 86 86 99
alpha I H B D F E C G A

num 0 4 6 15 35 58 86 86 99
alpha I H B D F E G C A

We might care! If we
are sorting first names
with last names, maybe
we want all the last
names to be in order.

Is our Merge Sort "stable"?
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
 int n1 = v1.size();
 int n2 = v2.size();
 int p1 = 0;
 int p2 = 0;
 while (p1 < n1 && p2 < n2) {
 if (v1[p1] < v2[p2]) {
 vec.add(v1[p1++]);
 } else {
 vec.add(v2[p2++]);
 }
 }
 while (p1 < n1) {
 vec.add(v1[p1++]);
 }
 while (p2 < n2) {
 vec.add(v2[p2++]);
 }
}

Is our Merge Sort "stable"?
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
 int n1 = v1.size();
 int n2 = v2.size();
 int p1 = 0;
 int p2 = 0;
 while (p1 < n1 && p2 < n2) {
 if (v1[p1] < v2[p2]) {
 vec.add(v1[p1++]);
 } else {
 vec.add(v2[p2++]);
 }
 }
 while (p1 < n1) {
 vec.add(v1[p1++]);
 }
 while (p2 < n2) {
 vec.add(v2[p2++]);
 }
}

Nope, not stable!

Is our Merge Sort "stable"?
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
 int n1 = v1.size();
 int n2 = v2.size();
 int p1 = 0;
 int p2 = 0;
 while (p1 < n1 && p2 < n2) {
 if (v1[p1] <= v2[p2]) {
 vec.add(v1[p1++]);
 } else {
 vec.add(v2[p2++]);
 }
 }
 while (p1 < n1) {
 vec.add(v1[p1++]);
 }
 while (p2 < n2) {
 vec.add(v2[p2++]);
 }
}

But we can make it stable

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Quicksort

• Quicksort is a sorting algorithm that is often faster
than most other types of sorts.

• However, although it has an average O(n log n) time
complexity, it also has a worst-case O(n2) time
complexity, though this rarely occurs.

Quicksort

• Quicksort is another divide-and-conquer algorithm.

• The basic idea is to divide a list into two smaller
sub-lists: the low elements and the high
elements. Then, the algorithm can recursively sort
the sub-lists.

Quicksort Algorithm
• Pick an element, called a pivot, from the list
• Reorder the list so that all elements with values less than

the pivot come before the pivot, while all elements with
values greater than the pivot come after it. After this
partitioning, the pivot is in its final position. This is called the
partition operation.

• Recursively apply the above steps to the sub-list of
elements with smaller values and separately to the sub-list
of elements with greater values.

• The base case of the recursion is for lists of 0 or 1
elements, which do not need to be sorted.

Quicksort Algorithm

• We have two ways to perform quicksort:
• The naive algorithm: create new lists for each sub-

sort, leading to an overhead of n additional
memory.

• The in-place algorithm, which swaps elements.

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (6)

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (6)

5 3 4 9 12

< 6 > 6

6

Partition into two new lists -- less than the pivot on
the left, and greater than the pivot on the right.

Even if all elements go into one list, that was just a
poor partition.

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (5)

5 3 4 9 12

< 5 < 9

6

Keep partitioning the sub-lists

3 4

pivot (9)

125 96

> 9> 5

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (3)

5 3 4 9 12

< 3

6

3 4 125 96
> 3

43 5 96 12

Quicksort Algorithm: Naive

6 5 9 12 3 4

5 3 4 9 126

3 4 125 96

3 4 5 6 9 12

Quicksort Algorithm: Naive Code
Vector<int> naiveQuickSort(Vector<int> v) { // not passed by reference!
 // base case: list of 0 or 1
 if (v.size() < 2) {
 return v;
 }
 int pivot = v[0]; // choose pivot to be left-most element

 // create two new vectors to partition into
 Vector<int> left, right;

 // put all elements <= pivot into left, and all elements > pivot into right
 for (int i=1; i<v.size(); i++) {
 if (v[i] <= pivot) {
 left.add(v[i]);
 }
 else {
 right.add(v[i]);
 }
 }
 left = naiveQuickSortHelper(left); // recursively handle the left
 right = naiveQuickSortHelper(right); // recursively handle the right

 left.add(pivot); // put the pivot at the end of the left

 return left + right; // return the combination of left and right
}

Quicksort Algorithm: In-Place

In-place, recursive algorithm:
 int quickSort(Vector<int> &v, int start, int finish);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the pivot with the element where the left/right cross, unless it happens to be the

pivot.
This is best described with a detailed example...

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30

pivot (56)

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30pivot (56)

lh rh

30 is already
smaller than

56

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value

should be to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value

should be to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value

should be to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30pivot (56)

lh rh58 is bigger
than 56

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the

smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 58 95 19 73 30pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the

smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh
19 is less than 56

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value

should be to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value

should be to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh
95 is greater than 56

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the

smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 95 19 73 58pivot (56)

lh rh
95 is greater than 56

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the

smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 19 95 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 19 95 73 58pivot (56)

lh rh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to

the left of the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element with the

pivot.

0 1 2 3 4 5 6 7

56 25 37 30 19 95 73 58pivot (56)

lhrh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element

with the pivot.

0 1 2 3 4 5 6 7

56 25 37 30 19 95 73 58pivot (56)

lhrh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• Pick your pivot as the left element (might not be a good choice...)
• Traverse the list from the end (right) backwards until the value should be to the left of

the pivot, or it hits the left.
• Traverse the list from the beginning (left, after pivot) forwards until the value should be

to the right of the pivot, or until it hits the right.
• Swap the two elements where the left/right cross, unless the pivot is the smallest.
• Repeat the traversals until they cross, at which point you swap that element

with the pivot.

0 1 2 3 4 5 6 7

19 25 37 30 56 95 73 58pivot (56)

lhrh

Quicksort Algorithm: In-Place

 quickSort(vec, 0, 7);
• The partitioning step has completed! The elements to the left of 56 are smaller, and the

elements to the right are bigger!
• The partitioning step returns the "boundary" value (index 4, in this case), and we can

now sort each sub-part of the vector:

quickSort(vec, 0, 3);
quickSort(vec, 4, 7);

If start is ever bigger than finish, we just return!

0 1 2 3 4 5 6 7

19 25 37 30 56 95 73 58pivot (56)

lhrh

Quicksort Algorithm: Big-O

• Best-case time complexity: O(n log n)
• Worst-case time complexity: O(n2)
• Average time complexity: O(n log n)
• Space complexity: naive: O(n) extra, in-place: O(log n) extra (because

of recursion)
• Stable?

0 1 2 3 4 5 6 7

19 25 37 30 56 95 73 58

Quicksort In-place Code

/*
 * Rearranges the elements of v into sorted order using
 * a recursive quick sort algorithm.
 */
void quicksort(Vector<int> &vec) {
 quicksort(vec, 0, vec.size() - 1);
}

void quicksort(Vector<int> &vec, int start, int finish) {
 if (start >= finish) return;
 int boundary = partition(vec, start, finish);
 quicksort(vec, start, boundary - 1);
 quicksort(vec, boundary + 1, finish);
}

We need a helper function to pass along left and right.

Quicksort In-place Code: Partition
int partition(Vector<int> &vec, int start, int finish) {
 int pivot = vec[start];
 int lh = start + 1;
 int rh = finish;

 while (true) {
 while (lh < rh && vec[rh] >= pivot) rh--;
 while (lh < rh && vec[lh] < pivot) lh++;
 if (lh == rh) break;

 // swap
 int tmp = vec[lh];
 vec[lh] = vec[rh];
 vec[rh] = tmp;
 }

 if (vec[lh] >= pivot) return start;
 vec[start] = vec[lh];
 vec[lh] = pivot;
 return lh;
}

Recap

Sorting Big-O Cheat Sheet

Sort Worst Case Best Case Average Case

Insertion O(n2) O(n) O(n2)

Selection O(n2) O(n2) O(n2)

Merge O(n log n) O(n log n) O(n log n)

Quicksort O(n2) O(n log n) O(n log n)

References and Advanced Reading

•References:
•http://en.wikipedia.org/wiki/Sorting_algorithm (excellent)
•http://www.sorting-algorithms.com (fantastic visualization)
•More online visualizations: http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
(excellent)

•Excellent mergesort video: https://www.youtube.com/watch?v=GCae1WNvnZM
•Excellent quicksort video: https://www.youtube.com/watch?v=XE4VP_8Y0BU
• Full quicksort trace: http://goo.gl/vOgaT5

•Advanced Reading:
• YouTube video, 15 sorts in 6 minutes: https://www.youtube.com/watch?v=kPRA0W1kECg (fun,
with sound!)

• Amazing folk dance sorts: https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7Xw
•Radix Sort: https://en.wikipedia.org/wiki/Radix_sort
•Good radix animation: https://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
•Shell Sort: https://en.wikipedia.org/wiki/Shellsort
•Bogosort: https://en.wikipedia.org/wiki/Bogosort

http://www.sorting-algorithms.com
http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.youtube.com/watch?v=GCae1WNvnZM
https://www.youtube.com/watch?v=XE4VP_8Y0BU
http://goo.gl/vOgaT5
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7Xw
https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Shellsort
https://en.wikipedia.org/wiki/Bogosort

Extra Slides

Why is the following nested loop O(n2)?

for (int i=0; i < n; i++) {
 for (int j=i; j < n; j++) {
 // do stuff...
 }
}

The first time through the outer loop, there are n steps.
The second time through the outer loop, there are n-1 steps.
The third time through the outer loop, there are n-2 steps.
…
The last time through the outer loop, there is 1 step.

Why is the following nested loop O(n2)?

for (int i=0; i < n; i++) {
 for (int j=i; j < n; j++) {
 // do stuff...
 }
}

In other words, the number of total steps is:

n + (n-1) + (n-2) + … + 2 + 1 = (n + 1) * n/2 = n2/2 + n/2

which, by our normal rules of simplifying Big O:

n2/2 + n/2 = O(n2/2) = O(n2)

