
Monday, July 17, 2017

Programming Abstractions

Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 10

CS 106B
Lecture 12: Memoization
and Structs

Today's Topics

•Logistics
•Assignment 3 due Tuesday, Noon
•Midterm Wed/Thur

•Memoization
•More on Structs

The Triangle Game

https://www.youtube.com/watch?v=kbKtFN71Lfs&feature=youtu.be

https://www.youtube.com/watch?v=kbKtFN71Lfs&feature=youtu.be

Memoization

*	Some	poe(c	license	used	when	transla(ng	quote

Tell me and I forget. Teach me
and I rememoize.*

- Xun Kuang, 300 BCE

Beautiful Recursion
• Let's look at one of the most beautiful recursive definitions:

Fn = Fn-1 + Fn-2
where F0=0, F1=1

• This definition leads to this:

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

The Fibonacci Sequence

Fn = Fn-1 + Fn-2
where F0=0, F1=1

This is particularly easy to code recursively!

long plainRecursiveFib(int n) {
 if(n == 0) {
 // base case
 return 0;
 } else if (n == 1) {
 // base case
 return 1;
 } else {
 // recursive case
 return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2);
 }
}

Let's play!

n 0 1 2 3 4 5 6 7 8 9 …
Fn 0 1 1 2 3 5 8 13 21 34

The Fibonacci Sequence
What happened??

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

https://www.youtube.com/watch?v=qXNqEURmKtA

https://www.youtube.com/watch?v=qXNqEURmKtA

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

https://www.youtube.com/watch?v=qXNqEURmKtA

https://www.youtube.com/watch?v=qXNqEURmKtA

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence

By the way:

3x10-6e0.4852n≅O(1.62n)
O(1.62n) is technically O(2n)

because
O(1.62n) < O(2n)

We call this a "tighter bound," and we like round
numbers, especially ones that are powers of two. :)

Fibonacci: Recursive Call Tree
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0

This is basically the reverse of binary search: we are splitting into two
marginally smaller cases, not splitting into half of the problem size!

Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
notice! a repeat!

fib(3) is completely calculated twice

Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
more repeats!

Fibonacci: There is hope!
6

5 4

4 3 3 2

3 2 2 1 2 1 1 0

2 1 1 0 1 0 1 0
1 0

let's leverage all the repeats!

Fibonacci: There is hope!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0
If we store the result of the first time we

calculate a particular fib(n), we don't have to
re-do it!

n = 3

n = 2 n = 1

n = 1 n = 0

Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future
executions, you don’t have to recalculate them.

aka
 

Remember what you have already done!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2
Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

Memoization: Don't re-do unnecessary work!

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

done!

Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) {
 Map<int, long> cache;
 return memoizationFib(cache, n);
}

setup for helper function

Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) {
 Map<int, long> cache;
 return memoizationFib(cache, n);
}

long memoizationFib(Map<int, long>&cache, int n) {
 if(n == 0) {
 // base case #1
 return 0;
 } else if (n == 1) {
 // base case #2
 return 1;
 } else if(cache.containsKey(n)) {
 // base case #3
 return cache[n];
 }
 // recursive case
 long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2);
 cache[n] = result;
 return result;
}

Memoization: Don't re-do unnecessary work!

Complexity?

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

The recursive path only happens on the left...
O(n log n) if using a map for the cache
O(n) if using a hashmap for the cache

Fibonacci: the bigger picture
There are actually many ways to write a fibonacci function.

This is a case where the plain old iterative function works fine:
long iterativeFib(int n) {
 if(n == 0) {
 return 0;
 }
 long prev0 = 0;
 long prev1 = 1;
 for (int i=n; i >= 2; i--) {
 long temp = prev0 + prev1;
 prev0 = prev1;
 prev1 = temp;
 }
 return prev1;
}

Recursion is used often,
but not always.

Fibonacci: Okay, one more...
Another way to keep track of previously-computed values
in fibonacci is through the use of a different helper
function that simply passes along the previous values:

long passValuesRecursiveFib(int n) {
 if (n == 0) {
 return 0;
 }
 return passValuesRecursiveFib(n, 0, 1);
}

long passValuesRecursiveFib(int n, long p0, long p1) {
 if (n == 1) {
 // base case
 return p1;
 }
 return passValuesRecursiveFib(n-1, p1, p0 + p1);
}

More on Structs
We have mentioned structs already -- they are useful for
keeping track of related data as one type, which can get
used like any other type. You can think of a struct as the
Lunchable of the C++ world.

struct Lunchable {
 string meat;
 string dessert;
 int numCrackers;
 bool hasCheese;
};

// Vector of Lunchables
Vector<Lunchable> lunchableOrder;

A Real Problem

Your cool picture from that trip to Europe doesn't fit on Instagram!

Bad Option #1: Crop

You got cropped out!

Bad Option #2: Resize

Stretchy castles look weird...

New Algorithm: Seam Carving!

New Algorithm: Seam Carving!

How can you change an image without changing its aspect ration,
but while retaining the important information?

New Algorithm: Seam Carving!

We could delete an entire column of pixels, but we could also
weave our way through a path of 1-pixel wide image that removes

the least amount of stuff.

How to represent the path

struct Coord {
 int row;
 int col;
};

A struct!

A path is just a Vector of coordinates:

int main() {
 Coord myCord;
 myCoord.row = 5;
 myCoord.col = 7;
 cout << myCord.row << endl;
 Vector<Coord> path;
 return 0;
}

New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their
neighbors.

New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that
minimizes the sum of all the importances of the pixels.

New Algorithm: Seam Carving!
Vector<Coord> getSeam(Grid<double> &weight, Coord curr);

References and Advanced Reading

•References:
• https://en.wikipedia.org/wiki/Fibonacci_number
• https://en.wikipedia.org/wiki/Seam_carving

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Seam_carving

Extra Slides

