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Today's Topics

•Logistics 
•Assignment 3 due Tuesday, Noon 
•Midterm Wed/Thur 

•Memoization 
•More on Structs



The Triangle Game

https://www.youtube.com/watch?v=kbKtFN71Lfs&feature=youtu.be 

https://www.youtube.com/watch?v=kbKtFN71Lfs&feature=youtu.be


Memoization

*	Some	poe(c	license	used	when	transla(ng	quote

Tell me and I forget. Teach me 
and I rememoize.*  

- Xun Kuang, 300 BCE 



Beautiful Recursion
• Let's look at one of the most beautiful recursive definitions:

Fn = Fn-1 + Fn-2 
where F0=0, F1=1

• This definition leads to this:



• And this:

Beautiful Recursion



• And this:

Beautiful Recursion



• And this:

Beautiful Recursion



• And this:

Beautiful Recursion



• And this:

Beautiful Recursion



The Fibonacci Sequence

Fn = Fn-1 + Fn-2 
where F0=0, F1=1

This is particularly easy to code recursively!

long plainRecursiveFib(int n) { 
    if(n == 0) { 
        // base case 
        return 0; 
    } else if (n == 1) { 
        // base case 
        return 1; 
    } else { 
        // recursive case 
        return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2); 
    } 
}

Let's play!

n 0 1 2 3 4 5 6 7 8 9 …
Fn 0 1 1 2 3 5 8 13 21 34



The Fibonacci Sequence
What happened??
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y	=	3E-06e0.4852x
R²	=	0.99986
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The Fibonacci Sequence

By the way: 

3x10-6e0.4852n≅O(1.62n) 
O(1.62n) is technically O(2n) 

because 
O(1.62n) < O(2n)

We call this a "tighter bound," and we like round 
numbers, especially ones that are powers of two. :)



Fibonacci: Recursive Call Tree
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0

This is basically the reverse of binary search: we are splitting into two 
marginally smaller cases, not splitting into half of the problem size! 



Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
notice! a repeat! 

fib(3) is completely calculated twice



Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
more repeats!



Fibonacci: There is hope!
6

5 4

4 3 3 2

3 2 2 1 2 1 1 0

2 1 1 0 1 0 1 0
1 0

let's leverage all the repeats!



Fibonacci: There is hope!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0
If we store the result of the first time we 

calculate a particular fib(n), we don't have to 
re-do it!

n = 3

n = 2 n = 1

n = 1 n = 0



Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future 
executions, you don’t have to recalculate them.  

aka 
 

Remember what you have already done!  



Memoization: Don't re-do unnecessary work!
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Cache: <empty>
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Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3
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Don't recurse! Use the cache!



Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5



Memoization: Don't re-do unnecessary work!

 

 

 

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

done!



Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) { 
    Map<int, long> cache; 
    return memoizationFib(cache, n); 
}

setup for helper function



Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) { 
    Map<int, long> cache; 
    return memoizationFib(cache, n); 
} 

long memoizationFib(Map<int, long>&cache, int n) { 
    if(n == 0) { 
        // base case #1 
        return 0; 
    } else if (n == 1) { 
        // base case #2 
        return 1; 
    } else if(cache.containsKey(n)) { 
        // base case #3 
        return cache[n]; 
    } 
    // recursive case 
    long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2); 
    cache[n] = result; 
    return result; 
}



Memoization: Don't re-do unnecessary work!

Complexity?  

 

 

 

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

The recursive path only happens on the left...
O(n log n) if using a map for the cache
O(n) if using a hashmap for the cache



Fibonacci: the bigger picture
There are actually many ways to write a fibonacci function. 

This is a case where the plain old iterative function works fine:
long iterativeFib(int n) { 
    if(n == 0) { 
       return 0; 
    } 
    long prev0 = 0; 
    long prev1 = 1; 
    for (int i=n; i >= 2; i--) { 
        long temp = prev0 + prev1; 
        prev0 = prev1; 
        prev1 = temp; 
    } 
    return prev1; 
}

Recursion is used often, 
but not always.



Fibonacci: Okay, one more...
Another way to keep track of previously-computed values 
in fibonacci is through the use of a different helper 
function that simply passes along the previous values:

long passValuesRecursiveFib(int n) { 
    if (n == 0) { 
        return 0; 
    } 
    return passValuesRecursiveFib(n, 0, 1); 
} 

long passValuesRecursiveFib(int n, long p0, long p1) { 
    if (n == 1) { 
        // base case 
        return p1; 
    } 
    return passValuesRecursiveFib(n-1, p1, p0 + p1); 
}



More on Structs
We have mentioned structs already -- they are useful for 
keeping track of related data as one type, which can get 
used like any other type. You can think of a struct as the 
Lunchable of the C++ world.

struct Lunchable { 
    string meat; 
    string dessert; 
    int numCrackers; 
    bool hasCheese; 
}; 

// Vector of Lunchables 
Vector<Lunchable> lunchableOrder; 



A Real Problem

Your cool picture from that trip to Europe doesn't fit on Instagram! 



Bad Option #1: Crop

You got cropped out!



Bad Option #2: Resize

Stretchy castles look weird...



New Algorithm: Seam Carving!



New Algorithm: Seam Carving!

How can you change an image without changing its aspect ration, 
but while retaining the important information?



New Algorithm: Seam Carving!

We could delete an entire column of pixels, but we could also 
weave our way through a path of 1-pixel wide image that removes 

the least amount of stuff.



How to represent the path

struct Coord { 
    int row; 
    int col; 
};

A struct!

A path is just a Vector of coordinates:

int main() { 
    Coord myCord; 
    myCoord.row = 5; 
    myCoord.col = 7; 
    cout << myCord.row << endl; 
    Vector<Coord> path; 
    return 0; 
}



New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their 
neighbors.



New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that 
minimizes the sum of all the importances of the pixels.



New Algorithm: Seam Carving!
Vector<Coord> getSeam(Grid<double> &weight, Coord curr);



References and Advanced Reading

•References: 
• https://en.wikipedia.org/wiki/Fibonacci_number  
• https://en.wikipedia.org/wiki/Seam_carving 

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Seam_carving
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