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®| OqQistics
eQuestion from a student: "Is there any other interesting youtube channel you can
recommend besides Numberphile”?" Glad you asked! (see YouTube Video page at
the end of the slides)

e\ore on Pointers
o\lystery function
ePointers and Structs
® [he -> operator
eDynamic Memory Allocation
* [ he new and delete keywords
*he "heap"




Recap of Pointer Syntax from the last lecture

ePointer Syntax #1:

¢ [0 declare a pointer, use the * symbol. Example:

string *laserPtr = NULL; // creates a pointer to a string and
// sets it to point to a non-usable address.

ePointer Syntax #2:

¢ [0 put a variable's address into a pointer, use the & symbol. Example:

string laser = '"green"; // has some address (example: 0xl1l2a5)
laserPtr = &laser; // puts the address of laser

// into the laserPtr variable.

// The value of laserPtr is now 0xl1l2a5

ePointer Syntax #3:
o get value of the variable a pointer points to, use the "*". Example:

string laserCopy = *laserPtr; // laserCopy is now '"green"




INtroduction to Pointers

What is a pointer?*

a memory address!




Mystery Function: What prints out”?

'void mystery(int a, int& b, intx c) { |
| a++;

(*%C)—-;

b += *C;
| cout << a << " " << b << " " << xc << " " << endl;
L
int main() A
int a
int b = 8;
int ¢ = -3;
cout << a << " " << b<x<<""<<c<<"" << endl;
mystery(c, a, &b);
cout << a << " " << b<x<<""<<c<<"" << endl;
return 0;
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Mystery Function: What prints out”?

lint

a++:
(kC)——;

b += *C;
cout << a <<

main() {
int a
int b
int ¢ = -3;

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
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'int main() {

Mystery Function: What prints out”?

a++:
(kC)——;
b += *C;
cout << a <<

Answer:

7

1
I

int a
int b
int ¢ = -3;

cout << a << " " << b<x<<""<<c<<"" << endl;
mystery(c, a, &b);

cout <k a << " " << b << " " << c<<"" << endl:

return 0;
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Pointers and Structs

+ Pointers can point to a struct or
class instance as well as to a
regular variable.

+ One way to do this would be to
dereference and then use dot
notation:

Date d;

d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

date
month

day

daysinMonth()
toString()




Pointers and Structs

Pointers can point to a struct or date
class instance as well as to a

regular variable. month
day

One way to do this would be to
dereference and then use dot

notation: dayS|ﬂMOﬂth()
Date d; toString()

d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

But, this notation Is cumbersome,
and the parenthesis are
necessary because the "dot" has
a higher precedence than the *.




Pointers and Structs

S0, we have a different, and more
intuitive syntax, called the "arrow"
syntax, —=>

Date d;

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;

- We will use the arrow syntax
almost exclusively when using

Structs.

date
month
day

daysinMonth()
toString()




Pointers and Structs

date

month
+The arrow syntax can be used to d
set a value or call a function In a ay

struct via a pointer, as well; daysinMonth()
Date d; toString()

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;
p->day = 1;

cout << p->day << endl; // 1
cout << p->toString() << endl; // 10/1




Dynamic Memory Allocation

So far in this class, all variables we have seen have been local variables that we
have defined inside functions. Sometimes, we have had to pass in object
references to functions that modify those objects. For instance, take a look at
the following code:

v01d squares(Vector<1nt> &vec,lnt nuquuares) {
’ for (int i=0; i < numSquares; i++) 1
vec.add(l x 1);
}
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This function requires the calling function to create a vector to use inside the
function. This isn't necessarily bad, but could we do it a different way? In other
words, could we create the Vector inside the function and just pass it back?




Dynamic Memory Allocation

Could we create the Vector inside the function and Just pass it back’? )

Vector<1nt> ‘squares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return vec;

Does this work"?

't actually does, but there Is an issue — you have to make a copy of the

Vector, which is inefficient (though...these days if the creator of the Vector
class is clever, we won't have to make a copy). Remember, we would rather =,
not pass around large objects.




Dynamic Memory Allocation

Okay maybe we can do this?

Vector<1nt> &squares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return vec;

Does this work’?
No :( This is actually really bad. Why"? The scope of vec is only the function,

and you are not allowed to pass back a reference to a variable that goes out
of scope.




Dynamic Memory Allocation

Well, how about with pomters? Can we do this?

Vector<1nt> ssquares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return &vec:

Does this work"?
No :( This is also really bad. Why? Same as before: the scope of vec is only

the function, and you are not allowed to pass back a pointer to a variable that
goes out of scope. When the function ends, the variable is destroyed, and =,
your program will almost certainly crash.




Dynamic Memory Allocation

- What do we want here”? What's the big deal”

- What we really want is really two things:

1. a way to reserve a section of memory so that it remains available to us
throughout our entire program, or until we want to destroy it (give it back to the
operating system)

2. a way to reserve any amount of memory we want at the time we need it.

+You mignht think that global variables are what we want, but that would be
INcorrect.

- Global variables can be accessed by any function in our program, and that isn't
what we want. Also, global variables have a fixed size at compile time, and that
Isn't what we want, either.




Dynamic Memory Allocation: new /A

- C++ allows you to request memory from the operating system using the keyword
new. [his memory comes from the "neap” whereas variables you simply declare

come from the "stack."” Both of those terms will become important in CS 107, but
for now, you need to know this:

+ Variables on the stack have a scope based on the function they are declared in.
Memory from the heap Is allocated to your program from the time you
request the memory until the time you tell the operating system you no
longer need it, or until your program ends.

- lo request memory from the heap, we use the following syntax:
type *variable = new type; // allocate one element

or
type *variable = new type[n]; // allocate n elements




Dynamic Memory Allocation: new

Examples:

“inf*anihtegéfﬁqnéWinf}//treéteﬁohe’intégér'on’thé*heab 

- The second example (tenInts) is very powerful — the memory you are given

IS an array guaranteed by the operating system to be contiguous. So, that's
how we allocate an array of items dynamically!

Notice that new returns a pointer to the type you request — this is important!

This is why we need to learn about pointers — in order to dynamically allocate
memory, you have to use a pointer.




Arrays

- We have been using Vectors in class so far, and we've said "Oh, a Vector is just
built on top of an array.” So, let's talk about arrays for a bit. They are "lower
level” than Vectors, and they are more limited.

, // size of 10 is known at compile time |

'int xsecondArray = new int[1@]; // create 10 integers on the

| // heap. Dynamically allocated.

\// T1ill the arrays with values

for (int i=0; i < 10; i++) {

| firstArray[i] = ix2; // evens

| secondArray[i] = ix2 + 1; // odds

) |

- Arrays are not objects and they don't have functlons so there isn't any
function like firstArray.length (). You have to keep track of the length! { 5

-~
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Arrays

You have to keep track of the length!

const int arrayLen = 10; |

iint firstArraylarraylLen]; // create a static array on the stack;
| // size of 10 is known at compile time

iint xsecondArray = new intlarrayLen]; // create 10 integers on the
| // heap. Dynamically allocated.
1// T1ll the arrays with values

‘for (int 1=0; i1 < arraylLen; i++) {

firstArrayl[i] = i%x2; // evens

secondArrayl[i] = ix2 + 1; // odds

Notice, by the way, that we access our arrays by using bracket notation:
firstArray[i] gives us the value at index i in the array.




Arrays

Unlike a vector, you can't just add another element past the end -- you are
imited to the amount you asked for

‘const int arraylLen = 10;

lint xmyArray = new int[arraylLen]; // create 1@ integers on the

| // heap. Dynamically allocated.
// fill the array with values

‘for (int i=@0; i < arrayLen; i++) {
. secondArrayl[i] = ix2 + 1; // odds
h

1// add another?
'secondArray.add(42); // nope!! Arrays don't have functions
isecondArray[10] = 42; // nope!! Off the end of the memory
| // space you were given ]
- When using arrays, you have to work with the limitations. We're taking off the
training wheels! ==




Dynamic Memory Allocation: under the hooo

The following statement requests an array of ten integers from the operating
system (OS).

The OS looks for enough unallocated memory on the heap in a row to give you,
then returns a pointer to that location (red is used, blue is free):

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15




Dynamic Memory Allocation: under the hooo

The following statement requests an array of ten integers from the operating
system (OS).

For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15




Dynamic Memory Allocation: under the hooo

+ The following statement requests an array of ten integers from the operating
system (OS).

- For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
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Dynamic Memory Allocation: under the hooo

+ The following statement requests an array of ten integers from the operating
system (OS).

- For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15
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NOT your
memory!
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Dynamic Memory Allocation: under the hooo

- What would happen if you do try to write a value into a location you don't own"?

- Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE
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Dynamic Memory Allocation: under the hooo

What would happen if you do try to write a value into a location you don't own"?
Possibilities:
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What would happen if you do try to write a value into a location you don't own"?
Possibillities:

1. Compiler won't let you.

2. Crash (seg fault)

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.
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Dynamic Memory Allocation: under the hooo

- What would happen if you do try to write a value into a location you don't own"?

- Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)

3. Nothing, as no one else Is using that area

4. Headline news for you in the New York Times.
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program was given.,

-+ The worm tricked the program into running its code, and was able to work its
way through the network to other computers.

- The worm had a bug that made it eat up all of the computer's memory, thereby
crashing the systems, one by one.




Buffer Overflows

Robert Morris, Jr. became the first person in
the U.S. convicted under the Computer Fraud
and Abuse Act, and was fined, performed
community service and served a three-year
probation.

He claimed that he was trying to demonstrate
computer security faults, but the court did not
believe him.

He did bounce back: now he is a professor of
computer science at MIT, and he co-founded
the start-up incubator, Y-Combinator.
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The Sentencing of Robert Morris Jr.




Dynamic Memory Allocation: delete

-+ The memory you request is yours until the end of the program, Iif you need it that
long.

+ YOU can pass around the pointer you get back as much as you'd like, and you
have access to that memory through that pointer in any function you pass the
pointer to.

But, what if you are done using that memory” Let's say you create an array of
10 Ints, use them for some task, and then are done with the memory*?
In this case, you delete the memory, giving it back to the Operating System:

Tnt Ftenints = new intil0]: /7 create 10 integers on the heap]
for (int i=0; i < 10; i++) { |
t tenInts[i] = randomInteger(1,1000);

§

'someFunction(tenInts);
i// done using tenInts EN
delete [] tenlInts; // the [] is necessary for an array K




Dynamic Memory Allocation: delete

- delete IS sometimes confusing. Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray,rlnt length) {
// allocate space for a new array
int *multiple = new int[length];

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length *x 2]; // now twice as many
for (int i=0; i < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value

multiple[ix2+1] = origArrayli]l * 3; // triple the value
I3

printArray(multiple, length x 2);

delete [] multiple; // clean up




Dynamic Memory Allocation: delete

-+ delete IS sometimes Confusmg Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray, int length) { I <« First: notice that we delete
// allocate space for a new array i tio| d th . |
int xmultiple = new int[length]; ; multiple, and then use It again!
| s that allowed”??

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length * 2]; // now twice as many
for (int i=0; 1 < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value

multiple[ix2+1] = origArrayli]l * 3; // triple the value
I3

printArray(multiple, length x 2);

delete [] multiple; // clean up




Dynamic Memory Allocation: delete

-+ delete IS sometimes Confusmg Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray, int length) { t « First: notice that we delete

// allocate space for a new array . . .
int *multiple = new int[length]; multiple, and then use It again!
s that allowed”??

for (int i=0; i < length; i++) {

multiple[i] = origArrayl[i] * 2; // double each value | + Itisl delete does not
' | delete any variables!
printArray(multiple, length); // prints each value doubled Instead, it follows the

pointer and returns the

delete [] multiple; // give back the memory memory to the OS!

multiple = new int[length * 2]; // now twice as many

for (int 1i=0; i < length; i++) 1 1 .
multiple[ix2] = origArray[il * 2; // double each value | However, you are not
multiple[i*2+1] = origArrayl[i] * 3; // triple the value allowed to use the

} | memory after you have

deleted .

, | This does not preclud...--"'" ----- N
| delete [] multiple; // clean up -
N | you from re-using theggs

pointer itself.

printArray(multiple, length x 2);

-~
Al -
- -
S sseers



Dynamic Memory Allocation: delete

- What does this print out, by the vvay for an orlgArray {1,

v01d arrayFun(lnt *orlgArray,rlnt length) {

// allocate space for a new array
int *kmultiple = new int[length];

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3

printArray(multiple, length); // prints each value doubled

delete [] multiple; // give back the memory

multiple = new int[length x 2];

for (int i=0; i < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value
multiple[ix2+1] = origArrayli]l * 3; // triple the value

// now twice as many

L

printArray(multiple, length x 2);

delete [] multiple; // clean up

5, 7}7

1lvoid printArray(int *array,

int length) {
cout << u[u;
for (int i1=0; i < length;
cout << arraylil;
if (i < length-1) {
cout << u’ u;
Iy

i++) {

}

cout << "]" << endl;

; OQutput:

[2, 10, 14]

[2, 3, 10, 15,




Dynamic Memory Allocation: under the hooo

-+ The memory you request is yours until the end of the program, Iif you need it that
long.
+ YOU can pass around the pointer you get back as much as you'd like, and you

have access to that memory through that pointer in any function you pass the
pointer to.

- Without knowing it, you have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,

Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.




Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page C\ass mstead)

struct Page {
string text; |
double leftM, rightM, topM, bottomM; // margins |
string header, footer; |
int textColor;

/ .
]

] :
g
| [ |

£ 3
) '
‘» |.

- How many pages should we allow the user of Stanford Word™?




Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page C\ass mstead)

struct Page {
string text; |
double leftM, rightM, topM, bottomM; // margins |
string header, footer; |
int textColor;

- How many pages should we allow the user of Stanford Word? 57
1nt main() {
Page pagesl[5]; // array of 5 pages




Thought experiment: the scary world without dynamic memory

+ People probably wouldn't buy your program if you limited them to five pages.

at
_ Stanford Word is limited to 5 pages. :l
Please upgrade to Stanford Word Pro

which allows up to 6 pages.

oK |
—

- Okay, let's make it bigger. How big”? 6 pages” 100 pages”? 1,000,000 pages?
- This Is a no-win battle.
- oo small, and your user might be unhappy.
- Too big? Waste of memory! Your program would hog memory if you did the
foHowmg

1nt main() { |
| Page pages[1000000]1; // array of a million pages,




Next Time: Bullding a Vector class with arrays

In the two lectures, we will discuss how the Vector is bullt, using dynamic memory.
We will need to keep track of all the details ourselves:

How much space we have allocated for the Vector

How many items are in the Vector

How to add / remove / insert into the Vector

How to expand the Vector

=
i

Thanks for using Stanford Word!
You can have unlimited pages!
0K |

S ———————————




Recap

Dynamic Memory Allocation:
new:. used to request heap memory that lasts for the rest of your

program, or until you don't need it anymore.

delete: used to return memory to the operating system.

f you use new to request memory, you should delete it somewhere In
your program.

You are not allowed to use memory that has been deleted.

deleting memory does not somehow "delete” the pointer variable -- it
goes to the location In memory pointed to, and tells the operating system
that we are done with it.




References and Advanced Reading

- References:
enew and delete: https://www.tutorialspoint.com/cplusplus/cpp dynamic _memory.

*\/ideo on dynamic memory allocation: https://www.youtube.com/watch?v=0rDiGp y1H

aling

- Advanced Reading:
e Fun video on pointers: https://www.youtube.com/watch?v=B7/IVHg-cgeU

Morris Worm: https://en.wikipec

la.org/wiki/Morris  worm

Buffer Overflow vulnerabllities: hr

tps://en.wikipedia.org/wiki/Buffer overflow



https://www.tutorialspoint.com/cplusplus/cpp_dynamic_memory.htm
https://www.youtube.com/watch?v=OrDjGp_y1H4
https://www.youtube.com/watch?v=B7lVHq-cgeU
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Buffer_overflow

Chris's Favorite YouTube Channels

e Numberphile: https://www.youtube.com/user/numberphile

e Cool videos about math, mathematical games and puzzles, number theory, etc.

e Computerphile: https://www.youtube.com/channel/UC9-y-6csubWGmM2917JiwpnA
e Sister site (produced by the same folks) as Numberphile, focusing on computers

e standupmaths: https://www.youtube.com/channel/UCSjus5G2aFaWMagn- OYBtg5A
e Numlberphile spin-off from one of its contributors

e EEVBlog: https://www.youtube.com/channel/UCr-cm90DwFJCOW3f9|Bs5|A
e |f you are interested in electronics, this is the place to go. Great tutorials, commentary, etc., by a down-to-earth Australian.
"Don't turn it on, take it apaht!”

e bigclivedotcom: https://www.youtube.com/channel/UCtM5z2gkrGRUWd0OJQMX76gA
¢ Scottish version of EEVBIog, with detailed under-the-hood electronics

e AVE: https://www.youtube.com/channel/UChWvEPNn zPOrl6lgGt3MyfA
e [rreverent Canadian who demonstrates the mechanical engineering end of the spectrum

eKurzgesagt — In a Nutshell: https://www.youtube.com/user/Kurzgesagt
eShort videos on cool stuff

e\/Sauce: https://www.youtube.com/user/Vsauce
eScience, math, philosophy, etc.



https://www.youtube.com/user/numberphile
https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA
https://www.youtube.com/channel/UCSju5G2aFaWMqn-_0YBtq5A
https://www.youtube.com/channel/UCr-cm90DwFJC0W3f9jBs5jA
https://www.youtube.com/channel/UCtM5z2gkrGRuWd0JQMx76qA
https://www.youtube.com/channel/UChWv6Pn_zP0rI6lgGt3MyfA
https://www.youtube.com/user/Kurzgesagt
https://www.youtube.com/user/Vsauce

Extra Slides




Operator Overloading: the What and the \Why

e\ore Tiny Feedback: "Not sure | understood operator overriding [sic]
very well.”

eC++ allows us to overload operators. \What does that mean”
o|t means that if we create a class, we can utilize common operators
e.q., +, *k, <<, etc.) to do what we want.

\\Vny do we do it?
o\\le want to make things easier and more straighttorward for the
user of our class.




Operator Overloading: Example

Let's look back at our Fraction class. We implemented a mult()

function: |
void Fraction::mult(Fraction other)

{

// multiplies a Fraction
// with this Fraction
num *= other.num;

denom *= other.denom;

// reduce the fraction
reduce () ;

}

But, this isn't the normal way we multiply numbers. We can fix
that!




Operator Overloading: Example

Our .h file needs a friend function:

class Fraction {
public:

friend Fraction operatorx(const Fraction &first, const Fraction &second);

The "const” just means we aren't allowed to change either
number when multiplying.




Operator Overloading: Example

+The function In our .cpp file:

Fraction operatorx(const Fraction &first, const Fraction &second) A
int newNum = first.num % second.num;
int newDenom = first.denom *x second.denom:

return Fraction(newNum,newDenom); // will be reduced automatically

}

- We simply return a new Fraction (which copies its elements.
Luckily, they aren't pointers!)

- We call the function like this;

Fraction two _thirds = Fraction(2,3);
Fraction three fourths = Fraction(3,4);
Fraction result = two thirds x three fourths; // result = 1/2

2

overloaded *



Dynamic Memory Allocation: your responsipilities

With great power comes great responsibility
You have a responsibility when using dynamic memory allocation to delete anything you
have requested via new.

This is the contract you make with the operating system: if you're done with the memory, you
should return it. The OS will take it back when your program ends, but this wastes memory,
ana th|s s called a memo y \eak )

{const int INIT CAPACITY = 1@@@@@@@ ] strlng ‘Demo: af(ihfiijf{ihnﬁiwgl'ﬁivwhil#th th}
; | | return bigArrayl[il;

‘class Demo { | [}

ipublic: : 7

? Demo(); // constructor ] tint main()

| string at(int 1i); | { {

iprivate: j | for (int 1=0;1<10000; i++){

| string xbigArray; 5 f Demo demo;

i ; | cout << i << ": " << demo.at(1234) << endl;
j : }

IDemo: :Demo() { | } return 0;

| bigArray = new string [INIT_CAPACITY]; -} L}

| for (int i=@;i<INIT_CAPACITY;i++) { | E—

1 bigArray[i] = "Lalalalalalalalala!"; | . -

N } | This program crashed my entire

computer when | ran it. Why?



Dynamic Memory Allocation: your responsipilities

This program crashed my entire computer when | ran it. Why?

We're allocating a ton of memory, and not deleting it!

We can fix It by adding a "destructor” -- when the class instance goes out of scope, the
destructor is called, cleaning up the memory for us.

iconst int INIT_CAPACITY = 10000000; ; iDemo: :~Demo() { f

| | | deletel] big_array; '

iclass Demo { f |}

foublic: | |

? Demo(); // constructor ; istring Demo::at(int i)
~Demo(); // destructor : | return bigArrayl[il;

| string at(int 1i); ; 5

iprivate: | |

| string xbigArray; : tint main()

i {

: | | for (int i=0;i<10000;i++){

{Demo: :Demo() { f ; Demo demo;

| bigArray = new string[INIT_CAPACITY]; | | cout << i << ": " << demo.at(1234) << endl;

for (int i=0; i<INIT CAPACITY;i++) A : | } |
bigArray[i] = "Lalalalalalalalala!"; | | return 0; 7 &%

} "




