CS 1068

L ecture 15: Dynamic stack
Memory Allocaton
Tuesday, July 25, 2017)

Programming Abstractions
Summer 2017

Stanford University
Computer Science Department

. S S SR SRR SR SR SRR SR SRS S W S W—————— — —

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 11

loday's lopics

®| OqQistics
eQuestion from a student: "Is there any other interesting youtube channel you can
recommend besides Numberphile”?" Glad you asked! (see YouTube Video page at
the end of the slides)

e\ore on Pointers
o\lystery function
ePointers and Structs
® [he -> operator
eDynamic Memory Allocation
* [he new and delete keywords
*he "heap"

Recap of Pointer Syntax from the last lecture

ePointer Syntax #1:

¢ [0 declare a pointer, use the * symbol. Example:

string *laserPtr = NULL; // creates a pointer to a string and
// sets it to point to a non-usable address.

ePointer Syntax #2:

¢ [0 put a variable's address into a pointer, use the & symbol. Example:

string laser = '"green"; // has some address (example: 0xl1l2a5)
laserPtr = &laser; // puts the address of laser

// into the laserPtr variable.

// The value of laserPtr is now 0xl1l2a5

ePointer Syntax #3:
o get value of the variable a pointer points to, use the "*". Example:

string laserCopy = *laserPtr; // laserCopy is now '"green"

INtroduction to Pointers

What is a pointer?*

a memory address!

Mystery Function: What prints out”?

'void mystery(int a, int& b, intx c) { |
| a++;

(*%C)—-;

b += *C;
| cout << a << " " << b << " " << xc << " " << endl;
L
int main() A
int a
int b = 8;
int ¢ = -3;
cout << a << " " << b<x<<""<<c<<"" << endl;
mystery(c, a, &b);
cout << a << " " << b<x<<""<<c<<"" << endl;
return 0;

4,

Mystery Function: What prints out”?

| a++;

S Ox5e
int b Oxf3
int ¢ = —-3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

BkC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

BkC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

(kC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

(kC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

(kC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

(kC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

}
'int main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

| a++;

(kC)—=; Ox5e
int b Oxf3
int ¢ = -3;

b += *C;
cout << a << " " << b <<

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;
return 0;

Y
4
Y
’ }
p

lint main() {
int a

1
I

Ox12 Oxab

[l
oo

Mystery Function: What prints out”?

lint

a++:
(kC)——;

b += *C;
cout << a <<

main() {
int a
int b
int ¢ = -3;

cout << a << " " << b << " " << c << " " << endl:
mystery(c, a, &b);

cout <<k a << " " << b<x<<""<<c<<"" << endl;

return 0:

1
I

Oxab Oxf3

[l
oo

Mystery Function: What prints out”?

void mystery(int a, int& b, intx c¢) { __@ b C_|
| a++:

(kC)—;

b += *C;
cout << a <<

1
L

int main() A

int a
int b
int ¢ = -3;

cout << a << " " << b<x<<""<<c<<"" << endl;
mystery(c, a, &b);

cout <k a << " " << b << " " << c<<"" << endl:
return 0;

1
I

Oxab Oxf3

[l
oo

Y
4
Y
’ }
p

'int main() {

Mystery Function: What prints out”?

a++:
(kC)——;
b += *C;
cout << a <<

Answer:

7

1
I

int a
int b
int ¢ = -3;

cout << a << " " << b<x<<""<<c<<"" << endl;
mystery(c, a, &b);

cout <k a << " " << b << " " << c<<"" << endl:

return 0;

Oxab Oxf3

[l
oo

Pointers and Structs

+ Pointers can point to a struct or
class instance as well as to a
regular variable.

+ One way to do this would be to
dereference and then use dot
notation:

Date d;

d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

date
month

day

daysinMonth()
toString()

Pointers and Structs

Pointers can point to a struct or date
class instance as well as to a

regular variable. month
day

One way to do this would be to
dereference and then use dot

notation: dayS|ﬂMOﬂth()
Date d; toString()

d.month = 7;
Date* dPtr = &d;
cout << (*dPtr).month << endl;

But, this notation Is cumbersome,
and the parenthesis are
necessary because the "dot" has
a higher precedence than the *.

Pointers and Structs

S0, we have a different, and more
intuitive syntax, called the "arrow"
syntax, —=>

Date d;

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;

- We will use the arrow syntax
almost exclusively when using

Structs.

date
month
day

daysinMonth()
toString()

Pointers and Structs

date

month
+The arrow syntax can be used to d
set a value or call a function In a ay

struct via a pointer, as well; daysinMonth()
Date d; toString()

d.month = 7;

Date* dPtr = &d;

cout << dPtr->month << endl;
p->day = 1;

cout << p->day << endl; // 1
cout << p->toString() << endl; // 10/1

Dynamic Memory Allocation

So far in this class, all variables we have seen have been local variables that we
have defined inside functions. Sometimes, we have had to pass in object
references to functions that modify those objects. For instance, take a look at
the following code:

v01d squares(Vector<1nt> &vec,lnt nuquuares) {
’ for (int i=0; i < numSquares; i++) 1
vec.add(l x 1);
}

13 $
Y i
)

\ [

; } ¥
®

: J
"

This function requires the calling function to create a vector to use inside the
function. This isn't necessarily bad, but could we do it a different way? In other
words, could we create the Vector inside the function and just pass it back?

Dynamic Memory Allocation

Could we create the Vector inside the function and Just pass it back’?)

Vector<1nt> ‘squares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return vec;

Does this work"?

't actually does, but there Is an issue — you have to make a copy of the

Vector, which is inefficient (though...these days if the creator of the Vector
class is clever, we won't have to make a copy). Remember, we would rather =,
not pass around large objects.

Dynamic Memory Allocation

Okay maybe we can do this?

Vector<1nt> &squares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return vec;

Does this work’?
No :(This is actually really bad. Why"? The scope of vec is only the function,

and you are not allowed to pass back a reference to a variable that goes out
of scope.

Dynamic Memory Allocation

Well, how about with pomters? Can we do this?

Vector<1nt> ssquares(int numSquares) {

Vector<int> vec;

for (int 1=0; i < numSquares; i++) A
vec.add(1i *x 1i);

}

return &vec:

Does this work"?
No :(This is also really bad. Why? Same as before: the scope of vec is only

the function, and you are not allowed to pass back a pointer to a variable that
goes out of scope. When the function ends, the variable is destroyed, and =,
your program will almost certainly crash.

Dynamic Memory Allocation

- What do we want here”? What's the big deal”

- What we really want is really two things:

1. a way to reserve a section of memory so that it remains available to us
throughout our entire program, or until we want to destroy it (give it back to the
operating system)

2. a way to reserve any amount of memory we want at the time we need it.

+You mignht think that global variables are what we want, but that would be
INcorrect.

- Global variables can be accessed by any function in our program, and that isn't
what we want. Also, global variables have a fixed size at compile time, and that
Isn't what we want, either.

Dynamic Memory Allocation: new /A

- C++ allows you to request memory from the operating system using the keyword
new. [his memory comes from the "neap” whereas variables you simply declare

come from the "stack."” Both of those terms will become important in CS 107, but
for now, you need to know this:

+ Variables on the stack have a scope based on the function they are declared in.
Memory from the heap Is allocated to your program from the time you
request the memory until the time you tell the operating system you no
longer need it, or until your program ends.

- lo request memory from the heap, we use the following syntax:
type *variable = new type; // allocate one element

or
type *variable = new type[n]; // allocate n elements

Dynamic Memory Allocation: new

Examples:

“inf*anihtegéfﬁqnéWinf}//treéteﬁohe’intégér'on’thé*heab

- The second example (tenInts) is very powerful — the memory you are given

IS an array guaranteed by the operating system to be contiguous. So, that's
how we allocate an array of items dynamically!

Notice that new returns a pointer to the type you request — this is important!

This is why we need to learn about pointers — in order to dynamically allocate
memory, you have to use a pointer.

Arrays

- We have been using Vectors in class so far, and we've said "Oh, a Vector is just
built on top of an array.” So, let's talk about arrays for a bit. They are "lower
level” than Vectors, and they are more limited.

, // size of 10 is known at compile time |

'int xsecondArray = new int[1@]; // create 10 integers on the

| // heap. Dynamically allocated.

\// T1ill the arrays with values

for (int i=0; i < 10; i++) {

| firstArray[i] = ix2; // evens

| secondArray[i] = ix2 + 1; // odds

) |

- Arrays are not objects and they don't have functlons so there isn't any
function like firstArray.length (). You have to keep track of the length! { 5

-~
Al -
- -
it eserrs

Arrays

You have to keep track of the length!

const int arrayLen = 10; |

iint firstArraylarraylLen]; // create a static array on the stack;
| // size of 10 is known at compile time

iint xsecondArray = new intlarrayLen]; // create 10 integers on the
| // heap. Dynamically allocated.
1// T1ll the arrays with values

‘for (int 1=0; i1 < arraylLen; i++) {

firstArrayl[i] = i%x2; // evens

secondArrayl[i] = ix2 + 1; // odds

Notice, by the way, that we access our arrays by using bracket notation:
firstArray[i] gives us the value at index i in the array.

Arrays

Unlike a vector, you can't just add another element past the end -- you are
imited to the amount you asked for

‘const int arraylLen = 10;

lint xmyArray = new int[arraylLen]; // create 1@ integers on the

| // heap. Dynamically allocated.
// fill the array with values

‘for (int i=@0; i < arrayLen; i++) {
. secondArrayl[i] = ix2 + 1; // odds
h

1// add another?
'secondArray.add(42); // nope!! Arrays don't have functions
isecondArray[10] = 42; // nope!! Off the end of the memory
| // space you were given]
- When using arrays, you have to work with the limitations. We're taking off the
training wheels! ==

Dynamic Memory Allocation: under the hooo

The following statement requests an array of ten integers from the operating
system (OS).

The OS looks for enough unallocated memory on the heap in a row to give you,
then returns a pointer to that location (red is used, blue is free):

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

Dynamic Memory Allocation: under the hooo

The following statement requests an array of ten integers from the operating
system (OS).

For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

Dynamic Memory Allocation: under the hooo

+ The following statement requests an array of ten integers from the operating
system (OS).

- For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

+ The following statement requests an array of ten integers from the operating
system (OS).

- For the above statement, the OS might pick row 3, column 4 for your request.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

- What would happen if you do try to write a value into a location you don't own"?

- Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

What would happen if you do try to write a value into a location you don't own"?
Possibilities:

1. Compiler won't let you. [Sadly, the compiler can't tell. You're on your own!

2. Crash (seg fault)

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

What would happen if you do try to write a value into a location you don't own"?
Possibilities:

1. Compiler won't let you.
2. Crash (seg fault) | Maybe. The OS can say "I don't think so!" but it isn't guaranteed.

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

What would happen if you do try to write a value into a location you don't own"?
Possibillities:

1. Compiler won't let you.

2. Crash (seg fault)

3. Nothing, as no one else Is using that area
4. Headline news for you in the New York Times.

|0f1(2]3]4]5[6]7[8]9][10]11[12]13[14]15

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Dynamic Memory Allocation: under the hooo

- What would happen if you do try to write a value into a location you don't own"?

- Possibilities:

1. Compiler won't let you.
2. Crash (seg fault)

3. Nothing, as no one else Is using that area

4. Headline news for you in the New York Times.
IEIIIEIBEIIIIII

tenints

43
Ox7c

NOT your
memory!

EIEEIK IEE

Buffer Overflows

“All the News .
That's Fit to Pont"”

-

Jork @imes

. Late Editon
New Yook Today, paedy sarery, mmlder.
Hgh 3004 Tenight, mordy cloady.
Low 4034, Tomerrow. cloody, windy,
ran developing. High 62 Yoo Jey:
Hgh i&_l.w 41, Dewie, poge Dl

VOLCXXXVIIL.,. No. 47679 coayeam

\"

'3

L
s
- .
e .
- ' -

A L o
. i
o -

Gurv. Michael 8. Dulkaiis having his pictare tieen by

@10 year ol Tam 31 3 toam msesing I Falreer TRk,
Pa. dering 2 war of the Northeast in which be e

phagined the drug prablers. Page A0, Vice Sz,

b There Rt Does & preseasted
doctine in e peroeriage of «f)-
bis Arvericara whe sow regis-
red 12 voie, 3 reasarch groop
repans

1 Notwsally, e percestags of
| cigbie Anmeorxam Wi e
. repbicrnd b oatizmsied o be
T3 -parcew, dawz 11 poiva
fram B 188 el - -

_ Tha praap's wdly canladed
that I masy of B¢ X axs
wistre e [gures are asal
ehic Lhe dechae wa amsang

| —

© 10 T e Vel T
— - ——

deat Bodh sdcrexmed sopporoess a rally i Colom-

bian Oftio. Leks than 3 week after Mr. Dakakds ac-
kaowledged being 2 Sberal, M. Bioeh xxid

- thurt iz ddectizn ks not abowt ladela ™ Pape AR

s NEW YORK, FRIDAY, NOVEMBER 4, 18§
F ’

b
L

000 2ead T Bien Soni S T O s snomin o Lang Mand

. ISCENTS

Virus’ in Military Computers

Disrupts Systems Nationwide;

By JOHN MARKOFF

12 30 prrysee thae rames
Uass sboal e Vlrerabiky =f
the salion’s coxpuicrs, & Dépesi-
mere of Delose seiwerk ban
heen 4

by a
peegram agparectdy mrodecsd
Ly & computer sOesce sude
The progmars reproduced fosl
trougk the conpaier setecxk,
makirg hadmeds ol copes b

. each rsackiy it reachad, effecs

twely chgsing spens lakng
hossands of mlizary, corpocele
ard L veriity cortpuiers sround
the ralion exd prevesting Sam
from dobayg scStiand wark. The
virus s Sogghn not 1 have S
ary Rlee

By bae praerday aftrsein
Oripeier ety wore calleg
Ihes wires e harges! o ever
o= (be ration’s compaters

The Rig less

“The g oo b (i & rela-
Usely Drgn sellware progran
OO0 WrTaaly Drisg cor comaputing
correnity 20 s ees a2d ke
H Cere for e tiee ™ ald
Chack Cole, Ceputy compeier S
cerky manaper M Lawpesce
Livermare Ladoratery o Liver.
more, Call, toe of e sies 2l
focted by be totrusion. " The cox
0 potsy le bt sagpering.”

Chfford S231 & covpaser o
curity axpeet 3t Harvard Uoevey
iy, added: “Theve b5 wx 0o 945
N Afeger Wi 1 aol lcareg
A ba¥ cel "2 cunisg esce-
maus heachickas ™

The alleciad cocepeters carry 2
creceeadous variety of dusiecsd
and research mlormetion areng

Aetnpsdsy
spreasiag “vires" =

W same seasitiyy midtary
daia are leveived the compuners

SECTEr LA Sratss, 100 Wl

on ¢ conirol of socicar woapons,
are thoughe ot o kawve bemn
ks hd Yy O e

Paniilis Ribageel Vicas

Corpaoes virumas acv w ovned
becazae dwy paralel s O 08y
pumer warkd the dehavier of b
MR vauss A varus a3 3 poo-
gram, or & acf of Estructions 12 &
corspuicr, St s ekhwer plarced
o= 3 Soppy dik meare 13 be e
with the COmpEter or I radaced
NEAO 188 (RO |13 com Tyt
Caling wver Ickpieee Loes o
SALR Betaczhs wilh other cocrpet-
e

Nmnan:mytyu-

scives Seothe corspeter' s TRIGET

sclivare, or operaang SFseme,
wisally withoot calling enry alica-
o 12 dwwsehves From DBere,
the program can be pansed o
add ona | corepaters

- —

Ingendeg tpon e eset of

e saftware's crontor, the pro
Eram might c3808 & PrOVICInVE
Pt ceherwies Rarmesd e pe
12 Eppear on e COrspuicrs
creen OF il couM sp¥ematically

Geslrey Quls & S cormpeirr's
eary. In Uiz camm, the vimes

progrars & rething more than
reprodace el ragedly

The pOograee was sppacotly &

real of a2 Operiment wakh
—

Cantmend on Moge A21, Colaree ?

“

PENTAGON REPORTS
IMPROPER CHARGES *
FOR CONSULTANTS

CONTRACTORS CRITICIZED

!

—

Inquary Shows Routine Billing
of Government by Industry =
—0n Foes, Some Debious

By JOMN H CUSHMAN J e
MAC 1 10 P T L 7

-

VASHINGION, Nov. 3 — A Perxls-
o rveatipaes by fourd Syt e -
Soa's larget =B lary costraciors oo
toaly charge S Deferss Degarinent
o hndreds of tilleas of Slees pald
0 corssanes, ofoen wihosr Jntitcs-
Lo

The report of S brecatipation sald
Sl refther Uxe mBtary’s camend
ndex rer the contraciars’ ows palicis
are Miacxame 33 sectare thar O Gow
STRIRenl Sons B3¢ Improperty pay for
prosninly arrangsd cossating wark
Scanr Delonse DeparGoerd offic ks
il U Peslages wxa propoudiay
changes i oorrect e faws. - —

Vhie 2 ix st Erpreper for reiltary
CORITITNSS 10 won comsaliamis 0 peT-
forming wark for e Peatagon, i
WOCR il reCtly Detsein D reibiary
4 510 be pad bor By e Deflerae De
partrmesl. Ofic=, Fentagpn bxwesligs-
wry dbcoverad this oot I not et

Beoadcr Lovk ol Coomseliants

1he Josbce Doguie Lrsest's com ey
s eravdsal sreesigpelion bes focesed ol
ixzilkn on commukaryts gad Scir role
the Cezpriry = selizg of wepooa,
and the Dedoree Degarumact bac Down
creed for wing comsdlas 20

frocle Now he Perraiin's O Saes

4

T T

Buffer Overflows

* " ! r I ﬂ R | e Ve A L
In 1988, a computer "worm" writte b.y | @lye New ﬁork(‘jtmgg siies
Cornell graduate student Robert Mortis, Jr. e e e e)
proliferated through government and Ve i iy ompute, | ey

B Disrupts Systems Nationwide {| IMPROPER CHARGES *
university computers, bringing down the '

MR soacos—|~FOR. CONSULTANTS

Iz mmnmsramqm mfilary ofictds ressacchery

coTgn Drepes b saauthy midia
et o Dederne cebweck has __ daa re Ievitred e compunes CONTRACTORS CAT csmmzm t
by a m”mal“ 2g AR - h;‘m‘ 100w s %
bnc::b.wmuc'enuhcd :‘ thought =t o kawe au'; 'MWW snows Routine Bl"lllg

The progrars rproduced foel ks hved by O virze =
trogk the w:vu;f :u:‘u: L ’ o O‘Gn;!mn;nlbylnqushy
I I I I I I I I I makiryg hodmdy ol g < 10 Riodage el Vic Duebious
tiwely chgsing spsens lakng Comrpases virumas a0v 1o vined —_—
- oesands of mlisary, conpocute Decazas dwy paralel s oy cony By JOMN H. CUSHMAN J ¢

] LEversiy cotspulers sround PORer warkd the Dehavier of Me SR 1 04 P O L —

the ratin exd prevestiag Sem Ipita) viruses A vanus 13 8 pes-

T fram dolag scStiand wark. The gram, or & ot of Eutructions 4 s VASHINGION, Nov. 3 — A Porls-
virus bx Qo noe 10 have de- corzputcr, Gixt U ekher plarced o frveatipatos b fourd Syt (e ra-
sroyee any Rlec o= 3 Soppy dik mears 13 be usag | | S0n's Jargeat =Btary coatraciors oo
By boe peaerday afersen with the competer oF I radaced toaly charge e Deferse
oripeler eaperts wore celleg whan 188 AeuNey |3 commra) for hendred s of mlleas of Godlaes pabd
— - - Ihe wites e barges! ok ever ating wver ickpieee Loes o nmrmm-nw;mnu
Gov. 8 18 Naving his o4 ety dest Bush wdd 4 s raily i Cab o= (be pation’s compaters. m:«mu-mmmm m o B anid

@ 10 yearold 1am 31 3 1oum msesing IV Faliriees T, e, Oftis. Leks than 3 week atier Mr. mbm“ The Rig lssw Sl refher e mftary’s camest

mtmmmwyxbu -
Pa. during 2 oar of the Norsheast in which be er- ksowledged being 2 Sberal, Mir. Biaeh oxid “The lig b b Ui & rede. 3CIVES SEothe corspeter s Smey || TAVLIS I conaCIany cws pacie

II - ; h, yrourdyy .
Phesingd the drug peablecs. Page Ajl Vice Svees. | thiat “this dectian lsnot abowt labels P:pAll. - — :
* ‘ ‘ |e WOFI [tOOk adval |ta e Of a U er : e e || i e o gy ey b o ey s | (S o 2 R
Registration Off . 4 ' Jueiks £ g ey B T 2 e the prognams Can be paned 1 | S50 Deloase Departocnd. cdfickds

et s Chack Cole, Cepety competer s *OM0nal cormputers changes iz correct the fava.
nce e | cerky manager a0 Lawseace (e Prge——— WhOe 2 bx not Srpreper for relliary
I I 1]]] v Livermare Ladoraery s LI (he saltware's cromeor. the pro- | | contracoes 0 use conssliants i per
There Rt boes & preseasced more, Calf, coe of (ke sies sl xm: maght c3ace A provocanve | [Soemaing werk for D Peaagon, e
Aectire o the peroertage of €)- fectod by (e totrusion. "The €25 ber coherwins Sarmiess (esis pe ek il Oectly Det (i D raibiary
Sbie Arseri=srs who sov regie- & prisy le bt siaggerizg” 13 appear on e clespulers o 4 6 10 be pad Bor By the Defierne De
, sered 12 voee, 3 ressarch grocp Cifford Sl & compaier & screen OF i coukd spsiemsatically partmest. Ofle=, Pentagon trveatigs-
repons curity axpant 31 Harvard Univer detlrey Qils & e cormponrr's wry discoversd, this cont Le pet reet.
Notweally, e percesiageof | 3 3 dry, added: “There B 002 545 mesary. I e cam, the vites
! cipble Amerxam wiw are ;:'m l"’:’ 2 2t "’::r‘ prigrams Nﬂt’fﬁlﬂ more than Beoadcr Lovk o1 Comeliants
| 1 . reghierd b @tinsied o be =, . 8 Gy = reprodacs el rapedly estce Dopeie Lrsest oy
Th3-parcecr, daws 11 poina . ——— The peogrars wes ety s || cpprinn) ool galin s focesed &
feam B 1854 bowel - - vt » The affectad corepeterscarryd realt of aa- opermzest wAKE || i o commabants gad Sheir rode
Tha praup's wudy canctaded |- JERH creceendous variety of dusieess rop e "
hat i masy of e 3 s - and research mlormation arseng fl!le(c'}‘q'rA.l Colaree ? and e 1 !‘ D m
wiwre Nonl Tgures are asal cntiiped for wsing cmsudans 00
thic Lhe dechoe was amang e | frevie Wow D¢ Perraidn’™s oun SSves.

program was given.,

-+ The worm tricked the program into running its code, and was able to work its
way through the network to other computers.

- The worm had a bug that made it eat up all of the computer's memory, thereby
crashing the systems, one by one.

Buffer Overflows

Robert Morris, Jr. became the first person in
the U.S. convicted under the Computer Fraud
and Abuse Act, and was fined, performed
community service and served a three-year
probation.

He claimed that he was trying to demonstrate
computer security faults, but the court did not
believe him.

He did bounce back: now he is a professor of
computer science at MIT, and he co-founded
the start-up incubator, Y-Combinator.

INFORMATIONWVEEK

ST ¢ 5 “ o
g oy
S
e
. o - 1.9
e LAt
b o
;f_

The Sentencing of Robert Morris Jr.

Dynamic Memory Allocation: delete

-+ The memory you request is yours until the end of the program, Iif you need it that
long.

+ YOU can pass around the pointer you get back as much as you'd like, and you
have access to that memory through that pointer in any function you pass the
pointer to.

But, what if you are done using that memory” Let's say you create an array of
10 Ints, use them for some task, and then are done with the memory*?
In this case, you delete the memory, giving it back to the Operating System:

Tnt Ftenints = new intil0]: /7 create 10 integers on the heap]
for (int i=0; i < 10; i++) { |
t tenInts[i] = randomInteger(1,1000);

§

'someFunction(tenInts);
i// done using tenInts EN
delete [] tenlInts; // the [] is necessary for an array K

Dynamic Memory Allocation: delete

- delete IS sometimes confusing. Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray,rlnt length) {
// allocate space for a new array
int *multiple = new int[length];

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length *x 2]; // now twice as many
for (int i=0; i < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value

multiple[ix2+1] = origArrayli]l * 3; // triple the value
I3

printArray(multiple, length x 2);

delete [] multiple; // clean up

Dynamic Memory Allocation: delete

-+ delete IS sometimes Confusmg Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray, int length) { I <« First: notice that we delete
// allocate space for a new array i tio| d th . |
int xmultiple = new int[length]; ; multiple, and then use It again!
| s that allowed”??

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3
printArray(multiple, length); // prints each value doubled
delete [] multiple; // give back the memory
multiple = new int[length * 2]; // now twice as many
for (int i=0; 1 < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value

multiple[ix2+1] = origArrayli]l * 3; // triple the value
I3

printArray(multiple, length x 2);

delete [] multiple; // clean up

Dynamic Memory Allocation: delete

-+ delete IS sometimes Confusmg Take a \ook at the foHowmg function:

v01d arrayFun(lnt *orlgArray, int length) { t « First: notice that we delete

// allocate space for a new array . . .
int *multiple = new int[length]; multiple, and then use It again!
s that allowed”??

for (int i=0; i < length; i++) {

multiple[i] = origArrayl[i] * 2; // double each value | + Itisl delete does not
' | delete any variables!
printArray(multiple, length); // prints each value doubled Instead, it follows the

pointer and returns the

delete [] multiple; // give back the memory memory to the OS!

multiple = new int[length * 2]; // now twice as many

for (int 1i=0; i < length; i++) 1 1 .
multiple[ix2] = origArray[il * 2; // double each value | However, you are not
multiple[i*2+1] = origArrayl[i] * 3; // triple the value allowed to use the

} | memory after you have

deleted .

, | This does not preclud...--"'" ----- N
| delete [] multiple; // clean up -
N | you from re-using theggs

pointer itself.

printArray(multiple, length x 2);

-~
Al -
- -
S sseers

Dynamic Memory Allocation: delete

- What does this print out, by the vvay for an orlgArray {1,

v01d arrayFun(lnt *orlgArray,rlnt length) {

// allocate space for a new array
int *kmultiple = new int[length];

for (int i=0; i < length; i++) A
multiplel[i] = origArrayl[i] * 2; // double each value
I3

printArray(multiple, length); // prints each value doubled

delete [] multiple; // give back the memory

multiple = new int[length x 2];

for (int i=0; i < length; i++) A
multiple[ix2] = origArrayl[i] * 2; // double each value
multiple[ix2+1] = origArrayli]l * 3; // triple the value

// now twice as many

L

printArray(multiple, length x 2);

delete [] multiple; // clean up

5, 7}7

1lvoid printArray(int *array,

int length) {
cout << u[u;
for (int i1=0; i < length;
cout << arraylil;
if (i < length-1) {
cout << u’ u;
Iy

i++) {

}

cout << "]" << endl;

; OQutput:

[2, 10, 14]

[2, 3, 10, 15,

Dynamic Memory Allocation: under the hooo

-+ The memory you request is yours until the end of the program, Iif you need it that
long.
+ YOU can pass around the pointer you get back as much as you'd like, and you

have access to that memory through that pointer in any function you pass the
pointer to.

- Without knowing it, you have been using dynamic memory all along, through the
use of the standard and Stanford library classes. The string, Vector, Map, Set,

Stack, Queue, etc., all use dynamic memory to give you the data structures we
have used for all our programs.

Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page C\ass mstead)

struct Page {
string text; |
double leftM, rightM, topM, bottomM; // margins |
string header, footer; |
int textColor;

/ .
]

] :
g
| [|

£ 3
) '
‘» |.

- How many pages should we allow the user of Stanford Word™?

Thought experiment: the scary world without dynamic memory

- What if (horror!) we took away the Stanford library and asked you to write a
Microsoft Word clone. Maybe you would start with something like this (although
you'd probably make a Page C\ass mstead)

struct Page {
string text; |
double leftM, rightM, topM, bottomM; // margins |
string header, footer; |
int textColor;

- How many pages should we allow the user of Stanford Word? 57
1nt main() {
Page pagesl[5]; // array of 5 pages

Thought experiment: the scary world without dynamic memory

+ People probably wouldn't buy your program if you limited them to five pages.

at
_ Stanford Word is limited to 5 pages. :l
Please upgrade to Stanford Word Pro

which allows up to 6 pages.

oK |
—

- Okay, let's make it bigger. How big”? 6 pages” 100 pages”? 1,000,000 pages?
- This Is a no-win battle.
- oo small, and your user might be unhappy.
- Too big? Waste of memory! Your program would hog memory if you did the
foHowmg

1nt main() { |
| Page pages[1000000]1; // array of a million pages,

Next Time: Bullding a Vector class with arrays

In the two lectures, we will discuss how the Vector is bullt, using dynamic memory.
We will need to keep track of all the details ourselves:

How much space we have allocated for the Vector

How many items are in the Vector

How to add / remove / insert into the Vector

How to expand the Vector

=
i

Thanks for using Stanford Word!
You can have unlimited pages!
0K |

S ———————————

Recap

Dynamic Memory Allocation:
new:. used to request heap memory that lasts for the rest of your

program, or until you don't need it anymore.

delete: used to return memory to the operating system.

f you use new to request memory, you should delete it somewhere In
your program.

You are not allowed to use memory that has been deleted.

deleting memory does not somehow "delete” the pointer variable -- it
goes to the location In memory pointed to, and tells the operating system
that we are done with it.

References and Advanced Reading

- References:
enew and delete: https://www.tutorialspoint.com/cplusplus/cpp dynamic _memory.

*\/ideo on dynamic memory allocation: https://www.youtube.com/watch?v=0rDiGp y1H

aling

- Advanced Reading:
e Fun video on pointers: https://www.youtube.com/watch?v=B7/IVHg-cgeU

Morris Worm: https://en.wikipec

la.org/wiki/Morris worm

Buffer Overflow vulnerabllities: hr

tps://en.wikipedia.org/wiki/Buffer overflow

https://www.tutorialspoint.com/cplusplus/cpp_dynamic_memory.htm
https://www.youtube.com/watch?v=OrDjGp_y1H4
https://www.youtube.com/watch?v=B7lVHq-cgeU
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Buffer_overflow

Chris's Favorite YouTube Channels

e Numberphile: https://www.youtube.com/user/numberphile

e Cool videos about math, mathematical games and puzzles, number theory, etc.

e Computerphile: https://www.youtube.com/channel/UC9-y-6csubWGmM2917JiwpnA
e Sister site (produced by the same folks) as Numberphile, focusing on computers

e standupmaths: https://www.youtube.com/channel/UCSjus5G2aFaWMagn- OYBtg5A
e Numlberphile spin-off from one of its contributors

e EEVBlog: https://www.youtube.com/channel/UCr-cm90DwFJCOW3f9|Bs5|A
e |f you are interested in electronics, this is the place to go. Great tutorials, commentary, etc., by a down-to-earth Australian.
"Don't turn it on, take it apaht!”

e bigclivedotcom: https://www.youtube.com/channel/UCtM5z2gkrGRUWd0OJQMX76gA
¢ Scottish version of EEVBIog, with detailed under-the-hood electronics

e AVE: https://www.youtube.com/channel/UChWvEPNn zPOrl6lgGt3MyfA
e [rreverent Canadian who demonstrates the mechanical engineering end of the spectrum

eKurzgesagt — In a Nutshell: https://www.youtube.com/user/Kurzgesagt
eShort videos on cool stuff

e\/Sauce: https://www.youtube.com/user/Vsauce
eScience, math, philosophy, etc.

https://www.youtube.com/user/numberphile
https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA
https://www.youtube.com/channel/UCSju5G2aFaWMqn-_0YBtq5A
https://www.youtube.com/channel/UCr-cm90DwFJC0W3f9jBs5jA
https://www.youtube.com/channel/UCtM5z2gkrGRuWd0JQMx76qA
https://www.youtube.com/channel/UChWv6Pn_zP0rI6lgGt3MyfA
https://www.youtube.com/user/Kurzgesagt
https://www.youtube.com/user/Vsauce

Extra Slides

Operator Overloading: the What and the \Why

e\ore Tiny Feedback: "Not sure | understood operator overriding [sic]
very well.”

eC++ allows us to overload operators. \What does that mean”
o|t means that if we create a class, we can utilize common operators
e.q., +, *k, <<, etc.) to do what we want.

\\Vny do we do it?
o\\le want to make things easier and more straighttorward for the
user of our class.

Operator Overloading: Example

Let's look back at our Fraction class. We implemented a mult()

function: |
void Fraction::mult(Fraction other)

{

// multiplies a Fraction
// with this Fraction
num *= other.num;

denom *= other.denom;

// reduce the fraction
reduce () ;

}

But, this isn't the normal way we multiply numbers. We can fix
that!

Operator Overloading: Example

Our .h file needs a friend function:

class Fraction {
public:

friend Fraction operatorx(const Fraction &first, const Fraction &second);

The "const” just means we aren't allowed to change either
number when multiplying.

Operator Overloading: Example

+The function In our .cpp file:

Fraction operatorx(const Fraction &first, const Fraction &second) A
int newNum = first.num % second.num;
int newDenom = first.denom *x second.denom:

return Fraction(newNum,newDenom); // will be reduced automatically

}

- We simply return a new Fraction (which copies its elements.
Luckily, they aren't pointers!)

- We call the function like this;

Fraction two _thirds = Fraction(2,3);
Fraction three fourths = Fraction(3,4);
Fraction result = two thirds x three fourths; // result = 1/2

2

overloaded *

Dynamic Memory Allocation: your responsipilities

With great power comes great responsibility
You have a responsibility when using dynamic memory allocation to delete anything you
have requested via new.

This is the contract you make with the operating system: if you're done with the memory, you
should return it. The OS will take it back when your program ends, but this wastes memory,
ana th|s s called a memo y \eak)

{const int INIT CAPACITY = 1@@@@@@@] strlng ‘Demo: af(ihfiijf{ihnﬁiwgl'ﬁivwhil#th th}
; | | return bigArrayl[il;

‘class Demo { | [}

ipublic: : 7

? Demo(); // constructor] tint main()

| string at(int 1i); | { {

iprivate: j | for (int 1=0;1<10000; i++){

| string xbigArray; 5 f Demo demo;

i ; | cout << i << ": " << demo.at(1234) << endl;
j : }

IDemo: :Demo() { | } return 0;

| bigArray = new string [INIT_CAPACITY]; -} L}

| for (int i=@;i<INIT_CAPACITY;i++) { | E—

1 bigArray[i] = "Lalalalalalalalala!"; | . -

N } | This program crashed my entire

computer when | ran it. Why?

Dynamic Memory Allocation: your responsipilities

This program crashed my entire computer when | ran it. Why?

We're allocating a ton of memory, and not deleting it!

We can fix It by adding a "destructor” -- when the class instance goes out of scope, the
destructor is called, cleaning up the memory for us.

iconst int INIT_CAPACITY = 10000000; ; iDemo: :~Demo() { f

| | | deletel] big_array; '

iclass Demo { f |}

foublic: | |

? Demo(); // constructor ; istring Demo::at(int i)
~Demo(); // destructor : | return bigArrayl[il;

| string at(int 1i); ; 5

iprivate: | |

| string xbigArray; : tint main()

i {

: | | for (int i=0;i<10000;i++){

{Demo: :Demo() { f ; Demo demo;

| bigArray = new string[INIT_CAPACITY]; | | cout << i << ": " << demo.at(1234) << endl;

for (int i=0; i<INIT CAPACITY;i++) A : | } |
bigArray[i] = "Lalalalalalalalala!"; | | return 0; 7 &%

} "

