CS 1068

| ecture 18: Binary Heaps
Monday, July 31, 2017

Programming Abstractions
Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, pp 721-722

loday's lopics

®| Ogistics
eOkay Everybody! :D (re: Midguarter feedback)
oH\W 5: Today's lesson will cover the heap extension
¢ [reat the code a bit like the Vectorint example we did in class

eDemo on why delete Is Important
eBinary Heaps

oA "tree” structure

¢ [he Heap Property

eParents have higher priority than children

Why do we care about delete”

const int INIT_CAPACITY = 1000000; et's see what happens!
class Demo {

public:
Demo(); // constructor
string at(int 1);
private:
string *bigArray,;
b

int main()

{

Demo: :Demo ()

{ for (int i=0:1<10000:i++)<{

bigArray = new string[INIT_CAPACITY];

| . ! | Demo demo;
for (int i=0;i<INIT CAPACITY;i++) {

cout << 1 <<
<< demo.at(1234)

bigArray[i] = "Lalalalalalalalala!'"; '

}
}

string Demo::at(int i)

{
}

return bigArrayl[i];

Priority Queues

eSometimes, we want to store data in a “prioritized way.”

o-xamples In real life;

e-mergency Room waiting rooms

o Professor Office Hours (what if a professor walks in? WWhat
about the department chair?)

e(Getting on an airplane (First Class and families, then frequent
flyers, then by row, etc.)

Priority Queues

o A “priority queue” stores elements according to their priority,
and not In a particular order.

¢ [his Is fundamentally different from other position-based data
structures we have discussed.

¢ [here Is no external notion of “position.”

Priority Queues

o A priority queue, P, has three fundamental operations:

*enqueue (k,e): Insert an element e with key k into P.

edequeue () : removes the element with the highest priority key
from P

epeek (). return an element of P with the highest priority key
(does not remove from queue).

Priority Queues

oPriority queues also have less fundamental operations:
esize (): returns the number ot elements Iin P.

°isEmpty (). Boolean test if P Is empty.

eclear (). empties the queue.

epeekPriority (). Returns the priority of the highest priority
element (why might we want this”)
°changePriority(string value, int newPriority).:
Changes the priority of a value.

Priority Queues

*Priority queues are simpler than sequences: no need to worry
about position (or insert (index, wvalue), add(value) tO

append, get (index), €tc.).
o\/\Ve only need one enqueue () and dequeue () function

Priority Queues

m Priority Queue

enqueue(5,A) {(5,A)}
enqueue(gl C) B {(SIA)I (9/ C)}
enqueue(3,B) B {(5/A)/ (9/ C)/ (313)}
enqueue(7/D) B {(5/A)/(9/C)/(3/B)/(7/D)}
peek() B {(5,A),(9,C),(3,B),(7,D)}
peekPriority() 3 {(5,A),(9,€),(3,B),(7,D)}
dequeue() B {(5,A),(9,C),(7,D)}
size() 3 {(5,A),(9,C),(7,D)}
peek() A {(5,A),(9,C),(7,D)}
dequeue() A {(9,C),(7,D)}
dequeue() D {(9,C)}
dequeue() C {}
dequeue() error! {}

ISEmpty() TRUE {}

Binary Heaps

o-or HW 5, you will build a priority queue using a Vector and a
inked list, and as an extension, using a "binary heap’

oA heap IS a tree-based structure that satisfies the heap
property:

eParents have a higher priority key than any of their children.

Binary Heaps

* There are two types of heaps:
Min Heap . Max Heap

(root Is the smallest element) (root is the largest element)

5 : 50
N : <N
10 8 | 19 36
/ \ / \ / N\ / \
12 11 14 13 | 17 3 25 1
/ \ /O
22 43 2 7

Binary Heaps

* [here are no Implied orderings between siblings, so both of the
trees below are min-heaps:

10 12 12 10

Binary Heaps

o(Circle the min-heap(s):

5 13

7N <N

10 8 19 36
/ \ / \ / \ / \
12 85 14 13 24 99 46 42
/ \ / \

22 11 25 26

Binary Heaps

o(Circle the min-heap(s):

5 13

7N <N

10 8 19 36
/ \ / \ / \ / \
12 85 14 13 24 99 46 42
/ \ / \

22 11 25 26

Binary Heaps

Heaps are completely filled, with the
exception of the bottom level. They are,

therefore, "complete binary trees”: ~ > Y
complete: all levels filled except the bottom 10 8
binary: two children per node (parent) / '\l / \\

12
e Maximum numper of nodes 1,1 1,4 1,3
eFilled from left to right 2 S AN A

22 43

Binary Heaps

What is the best way to store a heap”

We could use a node-based solution, but...

Binary Heaps

't turns out that an array works great for
storing a binary heap!

We will put the root at index 1 instead of Index

O (this makes the math work out just a bit
nicer).

5

10

12

11

14

13

22

43

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

5
TN
10 8
/ N\
12 11 14

\

/ \

\

13

Binary Heaps

The array representation makes determining parents and

children a matter of simple arithmetic: 5

oFor an element at position i <N
olcft child is at 2i 10 8
eright child is at 2i+1 / \ / \\
eparent is at /2 | 12 11 14 13

esheapSize: the number of elements in the heap. / \ r\ ,\

j

| | > |10| 8 |12|11|14|13|22|43| | 22 43
1| | | G151 w61 0] t81 | 191|130 | pea

Heap Operations

Remember that there are three important
oriority queue operations:

1.peek () : return an element of h with the - > Y
smallest key. 10 8
2.enqueue (k, e): insert an element e with / '\ / \.
key K Into the heap. 12 11 14 13

3.dequeue () : removes the smallest
element from h. / \

We can accomplish this with a heap!
We will just look at keys for now -- just know
that we will also store a value with the key.

Heap Operations: peek()

peek () 5
Just return the root! <N
return heap[1] 10 8
O(1) yay! / N\ / \\
12 11 14 13
/NN
5 10 8 |12 11 14 13 22|43 22 43 ‘\ ANNA

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: enqueue(k)

enqueue (k) 3
*How Mmight we go about inserting into a binary 5
heap? N
10 8
enqueue (9) / \ / \
12 11 14 13
5 10 8 12 11|14 13 22 43 /\ \ "\ ‘\

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: enqueue(k)

Heap Operations: enqueue (k)
1.Insert item at element array[heap.size () +1]

(this probably destroys the heap property) P 5 “~
10
2.Perform a “pubble up,” or "up-heap” operation: 7/ \ 8
a.Compare the added element with its parent — / N\
f In correct order, stop 12 11 14 13
b.If not, swap and repeat step 2. /\ r\ r\ r\
22 43 | ‘

See animation at: http://www.cs.usfca.edu/
~galles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html
http://www.cs.usfca.edu/~galles/visualization/Heap.html
http://www.cs.usfca.edu/~galles/visualization/Heap.html

Heap Operations: enqueue(9)

5
-~ N
Lo 8 5 10 8 (12 11 14 13 22 43
/ N\ / N\ (01 | [11 | [2] | [31 | [41 | [51 | [6] | [71 | [81 | [91 |[10] [11]
12 11 14 13
/ \ '\ '\ '\ Start by inserting the key at the first empty position.
l l

22 43 This is always at index heap . size () +1.

Heap Operations: enqueue(9)

5
~ N
10 8
/\ 5 10 8 {1211 14 13 22|43 9
/ \ [0]1 | [1] | [2] | [3]1 | [4] | [5] | [6] | [7]1 | [8] | [9] [10] [11]
12 11 14 13

'\ Start by inserting the key at the first empty position.
22 43 9 This Is always at iIndex heap.size () +1.

Heap Operations: enqueue(9)

5
~ N
10 S
/\ 5 10 8 12 11 (14 13 22 43 9
/ \ [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |[10] [11]
12 11 14 13
/NN N - .
1 1 ook at parent of index 10, and compare: do

we meet the heap property requirement?’/

No -- we must swap.

Heap Operations: enqueue(9)

5
- \
o 8 5 10 8 12 11‘ﬁ3 22)9
/ \L / \\
[0] | [1] | [2] | [3]1 | [4]1 | [5]1 [[6]1 | [7] | [8] | [9] [[10] [11]
12 11 14 13
! |
/NCIN N\

22 43 9

Heap Operations: enqueue(9)

5
- \
10 8 5 10 8 12 QﬁB 224>Ik.1
/ \\ / \\
[0] | [1] | [2] | [3]1 | [4] | [5]1 [[6]1 | [7] | [8] | [9] [[10] [11]
12 &) 14 13
! !
/NCIN N\

22 43 11

Heap Operations: enqueue(9)

5
~ N
10 8
/\ 510 8 12 9 |14 /13 22 43 11
/ \ [0] | [1] | [2] | [3]1 | [4] | [5] | [6] | [7]1 | [8] | [9] |[10] [11]
12 o 14 13

\
_—
-

\ Look at parent of index 5, and compare: do
we meet the heap property requirement?’/

—

No -- we must swap. his "bubbling up” won't ever be a
oroblem if the heap is "already a heap” (i.e., already
meets heap property for all nodes)

Heap Operations: enqueue(9)

5
10 S
/\ 5 10 8 12 9 14 13 22 43 11
/ \ [0] | [1] | [2] | [3] | [4]1 | [5]1 | [6] | [7] | [8] | [9] |[10] [11]
12 g 14 13

Heap Operations: enqueue(9)

5
S 8
/\ 5 9 8 1210 14 13 22 43 11
/ \ [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] [[10] |[11]
12 10 14 13

Heap Operations: enqueue(9)

NoO swap necessary between index 2 and its parent.

9/ ™
/ N\ / N\
12 10 14 13
/// \\ / | |
22 43 11 ‘\ ‘\

We're done bubbling up!

5

9

8

12

10

14

13

22

43

11

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Complexity? O(log n)
Average complexity for random inserts:

O(1), see: http://ieeexp
abs all.isp?arnumber=631

- yay!

ore.leee.org/xpls/

23854

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6312854
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6312854
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6312854

Heap Operations: dequeue|)

*How Mmight we go about removing the

miNnimum~?

dequeue ()

12

10

14

11

22

43

13

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

/5\

9 8

/ \ / \\
12 10 14
/N I\ |\

Heap Operations: dequeue|)

1.We are removing the root, and we need to retain a
complete tree: replace root with last element.

2."bubble-down” or "down-heap” the new root:
a.Compare the root with its children, if in correct
order, stop.

o.If not, swap with smallest child, and repeat step 2.

c.Be careful to check whether the children exist (if
right exists, left must...)

Heap Operations: dequeue|)

~ > N
9 8
/" \ / \\
12 10 14
/NN |\

\

12

10

14

11

22

43

13

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue|)

Remove root (will return at the end)

5 €~
9/ \8
/ N\ / \
12 10 14
AW

11

\

12

10

14

11

22

43

13

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue|)

Move last element (at heap [heap.size ()])
to the root (this may be unintuitive!) to begin

bupble-down
N o E—
9 2 5 9 8 12 10 14 11 22 43 13
01 | [11 | [21 | [31 | [41 | [51 | [6] | [71 | [8] | [9] |[10] [11]
/ / N\
12 [10 14 11
/ \ \] '\ '\ Don't forget to decrease heap size!
j j

Heap Operations: dequeue|)

Compare children of root with root: swap root with the smaller one (why?)

/13(\\'

9 8
/ N\ / \
12 10 14
/\ I\

\

O\

13

9

8

12

10

14

11

22

43

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue|)

Keep swapping new element If necessary. In this case: compare 13 to 11 and

/8\
o
/ \
12 10
/NN]\

3
O
14 11

\

14, and swap with smallest (11).

—

13

12

10

14

11

22

43

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: dequeue|)

13 has now bubbled down until it has no more children, so we are donel!

P N
9 11
/ \ / \\
12 10 14 13
/ \ / 1’\ 1’

11

12

10

14

13

22

43

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Complexity”? O(log n) - yay!

Heaps In Real Life

- Heapsort (see extra slides)

+ Google Maps -- finding the shortest path between places
- All priority queue situations

- Kernel process scheduling

* Event simulation

- Ruffman coding

Heap Operations: building a heap from scratch

What is the best method for building a heap from scratch (buildHeap())

14, 9,13, 43, 10, 8, 11, 22, 12

We could insert each in turn.
An insertion takes O(log n), and we have to insert n elements

Big O? O(n log n)

Heap Operations: building a heap from scratch

There Is a better way: heapify ()
1.Insert all elements into a binary tree in original order (O(N))

2.Starting from the lowest completely filled level at the first node with children
(e.q., at position n/2), down-heap each element (also O(n) to heapify the
whole tree).

for (int i=heapSize/2;i>0;i--) {
downHeap (1) ;

}

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

o -~ 14\13 14| 9 13 43|10 8 11|22 12
with children! /" N [01 | [1] | [2] | [31 | [4] | [51 | [6] | [7] | [81 | [9] |[10]|[11]
43 10 8 11 loop down:
/ \ ,\ ,\ i:heapSize/Z
29 12 | heapSlze::Q,

|==4

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14
N 14 9 (1343 10| 8 1122 12

9

13
N\ / \\
FIRTRR

AN AN A -

[0] | [1] | [2] | [3] | [4] | [5] | [6]1 | [7] | [8] | [9] |[10]|[11]

22 12

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14

13

12

10

11

22

43

[O]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

Nno swap
necessary 14
N 14 9 | 8 |12 /10|13 1122 43
8 [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |[10] |[11]
/ \
12 10 13 11

/NN

22 43

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

14, 9 | 8 112/10 /13 11 22 43

/ \ [0] | [1] | [2] | [3] | [4] | [5] | [6]1 | [7] | [8] | [9] |[10]|[11]

/NN

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

8 9 14/12 10 13 11 22 43

9 14
/ \ [0] | [1] | [2] | [3] | [4] | [5]1 | [e6]1 | [7]1 | [8] | [9] |[10] | [11]
/ \
12 10 13 11
/ \ r\ ,\ ,\ Must keep down-heaping
j j 1

Heap Operations: building a heap from scratch

14, 9,13, 43, 10, 8, 11, 22, 12

8
o - \11 8 9 11 1210 13 14 22 43
/ \ [0] | [1] | [2] | [3] | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10] |[11]
/ \
12 10 13 14 Done!

/ \ , , , We now have a proper min-heap.
| \ | \ | \ Asymptotic complexity — not trivial to
22 43 determine, but turns out to be O(n).

Heap Operations: heaping: empirical

40000 BuildHeap (Java)

35000

30000 —nlogh

“» 25000 n

20000

BulldHeap
Empirical Results

(J ava) 10000

5000

Time (m

15000

W

/)

0 | | | | | |
0 20000000 40000000 60000000 80000000 100000000 120000000

Number of Elements

Heap Operations: heaping: empirical

BulldHeap
Empirical Results
(C++)

12000

10000

3000

Time (ms)
S
S

4000

2000

0

o>

20000000

BuildHeap (C++)

40000000 60000000 80000000
Number of Elements

-—n log n

N

—empirical

100000000

120000000

References and Advanced Reading

- References:
oPriority Queues, Wikipedia: http://en.wikipedia.org/wiki/Priority queue

eYouTube on Priority Queues: https://www.youtube.com/watch?v=gJc-J7/K P w

eNttp://en.wikipedia.org/wiki/Binary heap (excellent)

eNttp://www.cs.usfca.edu/~galles/visualization/Heap.html (excellent visualization)

e Another explanation online: http://www.cs.cmu.edu/~adamchik/15-121/lectures/

Binary%20Heaps/heaps.ntml (excellent)

- Advanced Reading:

o A great online explanation of asymptotic complexity of a heap: http://www.cs.umd.edu/~meesh/

351/mount/lectures/lect14-heapsort-analysis-part.pdf
eYou Tube video with more detail and math: https://www.youtube.com/watch?v=

B/7hVxCmf

PtV

(excellent, mostly max heaps)

http://en.wikipedia.org/wiki/Priority_queue
https://www.youtube.com/watch?v=gJc-J7K_P_w
http://en.wikipedia.org/wiki/Binary_heap
http://www.cs.usfca.edu/~galles/visualization/Heap.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Binary%20Heaps/heaps.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Binary%20Heaps/heaps.html
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Binary%20Heaps/heaps.html
http://www.cs.umd.edu/~meesh/351/mount/lectures/lect14-heapsort-analysis-part.pdf
http://www.cs.umd.edu/~meesh/351/mount/lectures/lect14-heapsort-analysis-part.pdf
https://www.youtube.com/watch?v=B7hVxCmfPtM

Extra Slides

AN
> 11
LN P o
8 12
O 5 (11| 8 |12/10|14| 2 | 22| 43 N\ /“’ 14
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 2 22 43
2
P e
> 10
=N / \
2 | 5 /10| 8 |12 11|14 | 9 | 22 | 43 o A &

[0] [1] [2] [3]1 1[4] [5]1 [e] [7] [8] [9] [10] / \ /

o,
< 10
' //\1 aE
/

43| 5 (10| 8 |12 |11 |14 | 9 | 22 8
[0l [1i] [2] [3] 1[4] [5]1 [e]l [7] [8] [9] [10] / \
9 22

10

12

11

14

43

22

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D I
10
LN

12 11

/

12 11 | 14 43

9

10

[3]

8

[2]

22

[1]

[91] [10]

[5] [6] [7] [8]

[4]

[0]

10

22

12

11

14

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

-~ \

9 10
LN "
12 11

/

43

10

22

12

11

14

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

22

-~ \

9 10
LN "
12 11

/

14

12

10

22

43

11

14

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

o A
12 10
SN LN
43 11

/

L2\

12 10
v LN Lok
2 43 11

14 | 12 10 | 22 43 | 11

2
(o] [1] [2] [3]1 1[4] [5]1 [e] [7] [8] [9] [10] / \ /

10

12

11

22

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

N
12 11
Ly Lox
.3
/

43

12

11

22

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

22
/\

11

12

43

22

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

22

12

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

12

22

43

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

43

22

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

43

22

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91] [10]

(o] [1] [2] [3]1 1[4] [5]1 [e] [7] [8] [9] [10] / \ /

35000

HeapSort (Java)

30000

25000
nlogn

N

= N
Ul -
) o
) -
) -

empirical

Time (ms)

10000

5000

0 2000000 4000000 6000000 8000000 10000000 12000000
Number of Elements

4000

H rt (C++

oo eapSort (C++)

3000

2500 nlogn

N

1500 empirical

Time (ms)
S
3

1000

500

0 2000000 4000000 6000000 8000000 10000000 12000000
Number of Elements

50 45 12 17 31 18 22 40

----------- % ----\--- (ﬁ*l+(£*)+(i*%+ L (1)*1(()

3 16
L /.--.\ /\

""" f'\'""'/'"\"""/'\'"""/'\

50 45 22 40

b l() SR 7 by

---------- /\/\ ok

------ -/-\"-"-/"-x“""/-\-"""/-\. T g D
50 45)

221090 | latn) = lg0F T £)

------------------------------- k+ 2 ¢ -+ : :
A / \ /\ P Ee2_krien ke

50 45 22 40

------ e, e

>0 & 45 22 40 Z N G 4

------ /-\------/---x------/-\-------/-\-

50 45 22 40 cxn -+

