
Hashing
Brahm Capoor

CS 106B | Thursday, August 3rd

Based on lectures given by Chris Gregg and Anton Apostalatos

My laundry

My laundry on steroids

My laundry if I were a functional adult

A mapping from clothes to storage locations

Ye olde
clothes

organizer

Sock drawer

Cupboard

Hanging on
door

A mapping from clothes to storage locations

Ye olde
clothes

organizer

Socks Sock drawer

Cupboard

Hanging on
door

A mapping from clothes to storage locations

Ye olde
clothes

organizer

Socks

Hoodies

Sock drawer

Cupboard

Hanging on
door

A mapping from clothes to storage locations

Ye olde
clothes

organizer

Socks

Hoodies

Belts

Sock drawer

Cupboard

Hanging on
door

How does this mapping help?

I can go directly to where the clothes would be

How does this mapping help?

I can go directly to where the clothes would be

Lookup is improved

How does this mapping help?

I can go directly to where the clothes would be

Lookup is improved

Insertion is improved

How does this mapping help?

I can go directly to where the clothes would be

Lookup is improved

Insertion is improved

Removal is improved

How does this mapping help?

I can go directly to where the clothes would be

Lookup is improved

Insertion is improved

Removal is improved

Assuming I have N clothes, operations go from O(N) to O(1) ʣ

How does this mapping help?

Lookup is O(1)

Insertion is O(1)

Removal is O(1)
} Could we use this in a data structure?

A mapping from clothes to storage locations

Ye olde
clothes

organizer

Sock drawer

Cupboard

Hanging on
door

How a mapped data structure might look

Bucket A

Bucket B

Bucket C

Bucket D

Ye OLDE
string
MAPPER

...

How a mapped data structure might look

Bucket A

“banter”

Bucket B

Bucket C

Bucket D

Ye OLDE
string
MAPPER

“banter”

...

How a mapped data structure might look

Bucket A

“banter”

Bucket B

Bucket C

“:)”

Bucket D

Ye OLDE
string
MAPPER

“banter”

“:)”

...

How a mapped data structure might look

Bucket A

“banter”

Bucket B

Bucket C

“:)”

Bucket D

“C++”

Ye OLDE
string
MAPPER

“banter”

“:)”

“C++”

...

The last piece of the puzzle

Bucket A

Bucket B

Bucket C

Bucket D

Ye OLDE
string
MAPPER

How do we formalize the mapping
between strings and buckets?

...

The last piece of the puzzle

Bucket 0

Bucket 1

Bucket 2

Bucket 3

Ye OLDE
string
MAPPER

How do we formalize the mapping
between strings and buckets?

Step 1: Turn the buckets into an array

...

string *buckets = new string[nBuckets];

The last piece of the puzzle

Bucket 0

Bucket 1

Bucket 2

Bucket 3

string
||
||
\/

string.length() % 6

How do we formalize the mapping
between strings and buckets?

Step 1: Turn the buckets into an array

Step 2: Define a function from a string
to the index of a bucket in the array

string *buckets = new string[nBuckets];

...

Putting it all together

“banter”

“:)”

“C++”

Bucket 0

“banter”

Bucket 1

Bucket 2

“:)”

Bucket 3

“C++”

string *buckets = new string[nBuckets];

...

string
||
||
\/

string.length() % 6

Our Hash Function

string
||
||
\/

string.length() % 6

String Integer

The General Hash Function

Hash
Function

Element Integer

Implementing a HashMap!

Lookup, insertion and removal are all O(1)!

Implementing a HashMap!

Let’s make a HashMap with string
keys and int values

Implementing a HashMap!

Bucket 0

Bucket 1

Bucket 2

Bucket 3

...

string
||
||
\/

string.length() % 6

Let’s make a HashMap with string
keys and int values

How can we use our existing
infrastructure?

Implementing a HashMap!

Bucket 0

Bucket 1

Bucket 2

Bucket 3

...

string
||
||
\/

string.length() % 6

Let’s make a HashMap with string
keys and int values

How can we use our existing
infrastructure?

What should we put in the buckets?
Let’s see what happens when we do a
lookup

<type> *buckets = new <type>[nBuckets];

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

“banter” Return 1

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

“banter” Hash function 0 Return 1

“banter”.length() % 6 = 0

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

“banter” Hash function 0 Access 0th bucket
Bucket 0

???
Return 1

“banter”.length() % 6 = 0 buckets[0]

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

“banter” Hash function 0 Access 0th bucket
Bucket 0

1
Return 1

“banter”.length() % 6 = 0 buckets[0]

Implementing a HashMap: lookup
Let’s imagine that the key-value pair (”banter”, 1) is already in our map.

How would get get that 1 out when we call Map.get(“banter”)?

“banter” Hash function 0 Access 0th bucket
Bucket 0

1
Return 1

Put the values in the buckets?

“banter”.length() % 6 = 0 buckets[0]

What that would look like

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

A spanner in the works

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

Our map so far: { “banter”: 1, “:)”:10, “C++”:42}

A spanner in the works

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

Our map so far: { “banter”: 1, “:)”:10, “C++”:42}

What if I wanted to put (“Razzmatazzes”, 13) in the map?

A spanner in the works

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

Our map so far: { “banter”: 1, “:)”:10, “C++”:42}

What if I wanted to put (“Razzmatazzes”, 13) in the map?

“Razzmatazzes”.length() % 6 == “banter”.length % 6

A spanner in the works

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

Our map so far: { “banter”: 1, “:)”:10, “C++”:42}

What if I wanted to put (“Razzmatazzes”, 13) in the map?

“Razzmatazzes”.length() % 6 == “banter”.length % 6

How do I put it in the map without affecting the existing (“banter”, 1”) pair?

A spanner in the works

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

1

Bucket 1

Bucket 2

10

Bucket 3

42

int *buckets = new int[nBuckets];

...

string
||
||
\/

string.length() % 6

Our map so far: { “banter”: 1, “:)”:10, “C++”:42}

What if I wanted to put (“Razzmatazzes”, 13) in the map?

“Razzmatazzes”.length() % 6 == “banter”.length % 6

How do I put it in the map without affecting the existing (“banter”, 1”) pair?

Possible solution: Make the buckets collections of values instead

What that would look like

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

{1, 13}

Bucket 1

Bucket 2

{10}

Bucket 3

{42}...

string
||
||
\/

string.length() % 6

(“Razzmatazzes”, 13)

Another problem!

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

{1, 13}

Bucket 1

Bucket 2

{10}

Bucket 3

{42}...

string
||
||
\/

string.length() % 6

(“Razzmatazzes”, 13)

How do we know which is the value for “banter”
and which is the value for “Razzmatazzes”?

Another solution!

(“banter”, 1)

(“:)”, 10)

(“C++”, 42)

Bucket 0

“banter”:1
“razzmatazzes”:13

Bucket 1

Bucket 2

“:)”:10

Bucket 3

“C++”:42...

string
||
||
\/

string.length() % 6

(“Razzmatazzes”, 13)

The solution: store key-value pairs as structs
instead

Properties of hash functions

int hashFunction(const string &s) {
return s.length() % 6;

}

Properties of hash functions

int hashFunction(const string &s) {
return s.length() % 6;

}
// hashFunction(“banter”) is always 0

1. Deterministic: the same input always gives the same
output

Properties of hash functions

int hashFunction(const string &s) {
return s.length() % 6;

}
// hashFunction(“banter”) is always 0

1. Deterministic: the same input always gives the same
output

2. Fast: Runs quickly

Properties of hash functions

int hashFunction(const string &s) {
return s.length() % 6;

}
// hashFunction(“banter”) is always 0

1. Deterministic: the same input always gives the same
output

2. Fast: Runs quickly
3. Well distributed output

Collisions Ȇ

Unless I have infinite buckets, I can’t guarantee that everything will
have its own bucket

Collisions Ȇ

Unless I have infinite buckets, I can’t guarantee that everything will
have its own bucket

If two things are hashed into the same bucket, a collision has occurred

Collisions Ȇ

Unless I have infinite buckets, I can’t guarantee that everything will
have its own bucket

If two things are hashed into the same bucket, a collision has occurred

This isn’t necessarily a bad thing

Load factors

The load factor of a hashmap is n/N
n is the number of keys in the map
N is the number of buckets in the map

Load factors

The load factor of a hashmap is n/N
n is the number of keys in the map
N is the number of buckets in the map

If the load factor is low, and the hash function is well distributed,
operations are O(1)

Load factors

The load factor of a hashmap is N/n
N is the number of keys in the map
n is the number of buckets in the map

If the load factor is low, and the hash function is well distributed,
operations are O(1)

If the load factor is high (N >> n), or the hash function is badly
distributed, operations are O(N)

Rehash if the load factor is too high

Bucket 0

“banter”:1
“razzmatazzes”:13

Bucket 1

“pizzazz”:100
“a”:10

Bucket 2

“:)”:10

Bucket 3

“C++”:42

Bucket 4 Bucket 5

“brahm”:20
“jabberwocky”:11

Hash function: string.length() % 6

Rehash if the load factor is too high

Bucket 0

“banter”:1
“razzmatazzes”:13

Bucket 1

“pizzazz”:100
“a”:10

Bucket 2

“:)”:10

Bucket 3

“C++”:42

Bucket 4 Bucket 5

“brahm”:20
“jabberwocky”:11

Hash function: string.length() % 6

Bucket 6

Bucket 7 Bucket 8 Bucket 9 Bucket 10 Bucket 11

Problem: we only use 6/12
buckets!

Rehash if the load factor is too high

Bucket 0

“razzmatazzes”:13

Bucket 1

“a”:10

Bucket 2

“:)”:10

Bucket 3

“C++”:42

Bucket 4 Bucket 5

“brahm”:20

Hash function: string.length() % 12

Bucket 6

“banter”:1

Bucket 7

“pizzazz”:100

Bucket 8 Bucket 9 Bucket 10 Bucket 11

“jabberwocky”:11

Solution: Change how much we
compress the string’s length

Compression functions

string.length() % nBuckets

Compression functions

string.length() % nBuckets

Hash function Compression function

Compression functions

string.length() % nBuckets

Hash function Compression function

When we rehash: This stays the same! Only this changes!

Our HashMap<int, int>

0 1 2 3 4 5

nBuckets: 6
nElems: 0

n

% nBuckets

Hash function

Compression function

Map.put(3,7)

0 1 2 3

(3,7)

4 5

nBuckets: 6
nElems: 1

n = 3

% nBuckets
= 3 % 6 = 3

Hash function

Compression function

(3, 7)

Map.put(16,10)

0 1 2 3

(3,7)

4

(16,10)

5

nBuckets: 6
nElems: 2

n = 16

% nBuckets
= 16 % 6 = 4

Hash function

Compression function

(16, 10)

Map.get(16)

0 1 2 3

(3,7)

4

(16,10)

5

nBuckets: 6
nElems: 2

n = 16

% nBuckets
= 16 % 6 = 4

Hash function

Compression function

(16)

return 10

Rehashing

0 1 2 3

(3,7)

4

(16,10)
(10,3)

5

nBuckets: 6
nElems: 3

n

% nBuckets

Hash function

Compression function

1. Make new buckets
array

Rehashing

0 1 2 3

(3,7)

4

(16,10)
(10,3)

5

nBuckets: 12
nElems: 3

n

% nBuckets

Hash function

Compression function

0 1 2 3 4 5 6 7 8 9 10 11

1. Make new buckets array
2. Put everything in new array

Rehashing nBuckets: 12
nElems: 3

n

% nBuckets

Hash function

Compression function

0 1 2 3

(3,7)

4

(16,10)

5 6 7 8 9 10

(10,3)

11

How to not be hacked

Deep in the servers of facebook...
Email Password

brahm@stanford.edu banter

cgregg@stanford.edu typewriters

cheson@stanford.edu ILoveC++

elonmusk@tesla.com electriccar

b.wayne@wayneenterprises.com nanananabatman

Deep in the servers of facebook...
Email Password

brahm@stanford.edu banter

cgregg@stanford.edu typewriters

cheson@stanford.edu ILoveC++

elonmusk@tesla.com electriccar

b.wayne@wayneenterprises.com nanananabatman

A hacker could see these passwords!

Idea #1: store the length of the password instead
Email Password length

brahm@stanford.edu 6

cgregg@stanford.edu 11

cheson@stanford.edu 8

elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

Idea #1: store the length of the password instead
Email Password length

brahm@stanford.edu 6

cgregg@stanford.edu 11

cheson@stanford.edu 8

elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

Pros: Hackers can’t see passwords in the
database and can’t reverse-engineer the
passwords from their length

Cons: Any string of length 6 can log into Brahm’s
account!

Idea #1: store the length of the password instead
Email Password length

brahm@stanford.edu 6

cgregg@stanford.edu 11

cheson@stanford.edu 8

elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

Pros: one-way function Cons: not well-distributed

We need a function that is...

Deterministic

We need a function that is...

Deterministic

Fast

We need a function that is...

Deterministic

Fast

Well-distributed

We need a function that is...

Deterministic

Fast

Well-distributed

One-way

We need a function that is...

Deterministic

Fast

Well-distributed

One-way

} #tbt

Cryptographic hash functions

A hash function that is also one-way

Cryptographic hash functions

A hash function that is also one-way

One-way: extremely difficult to computationally reverse

Cryptographic hash functions

A hash function that is also one-way

One-way: extremely difficult to computationally reverse

Small changes in the password lead to large changes in the hash
“banter” hashes to ef6571a62275adbb8b5cbd4ef9875a37
“Banter” hashes to c0027b4342d084ba1fb8a04d8e514ab2

What that would look like
Email Password hash

brahm@stanford.edu ef6571a62275adbb8b5cbd4ef9875a37

cgregg@stanford.edu 5111a48e448f2a8912606c60d70a42e4

cheson@stanford.edu fecb1ce853fb5ae06c41ec4ba06d115a

elonmusk@tesla.com df0095aa19143a860e3ecb43ff533710

b.wayne@wayneenterprises.com 67988da12ad15278c841f0f06c69b209

What that would look like
Email Password hash

brahm@stanford.edu ef6571a62275adbb8b5cbd4ef9875a37

cgregg@stanford.edu 5111a48e448f2a8912606c60d70a42e4

cheson@stanford.edu fecb1ce853fb5ae06c41ec4ba06d115a

elonmusk@tesla.com df0095aa19143a860e3ecb43ff533710

b.wayne@wayneenterprises.com 67988da12ad15278c841f0f06c69b209

Passwords can’t be re-engineered and every
password has its own hash!

23rd February, 2017

23rd February, 2017

One day later...

What you’re learning matters!

endl;

