Hashing

Brahm Capoor

CS 106B | Thursday, August 3rd

Based on lectures given by Chris Gregg and Anton Apostalatos

My laundry

My laundry on steroids

» Wt J

My laundry if | were a functional adult

A mapping from clothes to storage locations

Sock drawer

YE OLDE

CLOTHES Cupboart
orGanizer

Hanging on
door

A mapping from clothes to storage locations

) Sock drawer

YE OLDE

CLOTHES Cupboart
orGanizer

Hanging on
door

A mapping from clothes to storage locations

Socks G

) Sock drawer

Ye OLDE
Hoodies n————

m——) Cupboard

CLOTHES
OrGgdnizer

Hanging on
door

A mapping from clothes to storage locations

Socks G

) Sock drawer

Ye OLDE
Hoodies n————

m——) Cupboard

CLOTHES
OrGgdnizer

Hanging on
Belts ———— I door

How does this mapping help?

| can go directly to where the clothes would be

How does this mapping help?

Lookup is improved

How does this mapping help?

Insertion is improved

How does this mapping help?

Removal is improved

How does this mapping help?

Assuming | have N clothes, operations go from O(N) to 0(1) @

How does this mapping help?

Lookup is O(1)

Insertion is 0(1) Could we use this in a data structure?

Removal is 0(1)

A mapping from clothes to storage locations

Sock drawer

YE OLDE

CLOTHES Cupboart
orGanizer

Hanging on
door

How a mapped data structure might look

YE OtDE

string
MAPPER

How a mapped data structure might look

“banter” G
YE OtDE

string
MAPPER

How a mapped data structure might look

How a mapped data structure might look

The last piece of the puzzle

How do we formalize the mapping
between strings and buckets?

YE OtDE

string
MAPPER

The last piece of the puzzle

string *buckets = new string[nBuckets];

How do we formalize the mapping
between strings and buckets?

Step 1: Turn the buckets into an array

YE OtDE

string
MAPPER

The last piece of the puzzle

string *buckets = new string[nBuckets];

How do we formalize the mapping
between strings and buckets?

Step 1: Turn the buckets into an array

Step 2: Define a function from a string
to the index of a bucket in the array

string.length() % 6

Putting it all together

string *buckets = new string[nBuckets];

“banter” —
“)” —

Our Hash Function

=) [nteger

string.length() % 6

The General Hash Function

Element) B EST

=) [nteger

Function

Implementing a HashMap!

class HashMap<KeyType, ValueType>

This class implements an efficient association between keys and values. This class is identical to the Map class except for the fact
that it uses a hash table as its underlying representation. Although the HashMap class operates in constant time, the iterator for

HashMap returns the values in a seemingly random order.

Methods
get (key) O(1)| Returns the value associated with key in this map.

put (key, value) O(1) Associates key with value in this map.
remove (key) O(1)| Removes any entry for key from this map.

Lookup, insertion and removal are all O(1)!

Implementing a HashMap!

Let’s make a HashMap with string
keys and int values

Implementing a HashMap!

Let’s make a HashMap with string
keys and int values

How can we use our existing
infrastructure?

string.length() % 6

Implementing a HashMap!

<type> *buckets = new <type>[nBuckets];

Let’s make a HashMap with string
keys and int values

How can we use our existing
infrastructure?

What should we put in the buckets?
Let’s see what happens when we do a
lookup

string.length() % 6

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

“banter”

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

“banter”.length() % 6 = @

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

“banter” m Access oth bucket - -m

“banter”.length() % 6 = @ buckets[©

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

“banter” m Access oth bucket - -m

“banter”.length() % 6 = @ buckets[©

Implementing a HashMap: lookup

Let’s imagine that the key-value pair (”’banter”, 1) is already in our map.

How would get get that 1 out when we call Map . get (“banter”)?

“banter” m Access oth bucket - m
buckets

.length() % 6 = ©

Put the values in the buckets?

What that would look like

int *buckets = new int[nBuckets];

(“banter”, 1) G

A spanner in the works

mmap sofar: { “banter”: 1, “:)”:10, “C++”:42} \9

(ﬂ'(:_l__}_)JJ J

A spanner in the works

e

What if | wanted to put (“Razzmatazzes”, 13) inthe map?

(f('(:_}__}_))J

.

A spanner in the works

(f('(:_}__}_))J

e

“Razzmatazzes”.length() % 6 == “banter”.length % 6

.

A spanner in the works

e

How do | put it in the map without affecting the existing (“banter”, 1”) pair?

(f('(:_}__}_))J

.

A spanner in the works

T int *huckets = new int[nBuckets];

//;;;nmpsofan { “banter”: 1, “:)”:10, “C++’:42} 0

What if | wanted to put (“Razzmatazzes”, 13) inthe map?

=

(“:)”| “Razzmatazzes”.length() % 6 == “banter”.length % 6

How do | put it in the map without affecting the existing (“banter”, 1”) pair?

Possible solution: Make the buckets collections of values instead

N :

(('('(:++.UJ

What that would look like

Another problem!

(“banter”, 1)

(“Razzmatazzes”, 13) —
(“:)”, 10) —

(“Ce+?, 42)

How do we know which is the value for “banter”
and which is the value for “Razzmatazzes”?

Another solution!

(“banter”, 1)

(“Razzmatazzes”, 13) —
(“:)”, 10) —

(“Cr+”, 42))

The solution: store key-value pairs as structs
instead

Properties of hash functions

int hashFunction(const string &s) {
S. () % 6;

}

Properties of hash functions

1. Deterministic: the same input always gives the same

output int hashFunction(const string &s) {

S. () % 6;

}

Properties of hash functions

1.

int hashFunction(const string &s) {

2. Fast: Runs quickly S. () % 6;

}

Properties of hash functions

1.

int hashFunction(const string &s) {

9 S. () % 6;
3. Well distributed output }

Collisions 2«

Unless | have infinite buckets, | can’t guarantee that everything will
have its own bucket

Collisions 2«

If two things are hashed into the same bucket, a collision has occurred

Collisions z

Unless | have infinite buckets, | can’t guarantee that everything will
have its own bucket

If two things are hashed into the same bucket, a collision has occurred

This isn’t necessarily a bad thing

Load factors

The load factor of a hashmap is n/N

n is the number of keys in the map
N is the number of buckets in the map

Load factors

If the load factor is low, and the hash function is well distributed,
operations are 0(1)

Load factors

If the load factor is high (N >> n), or the hash function is badly
distributed, operations are O(N)

Rehash if the load factor is too high

Hash function: string.length() % 6

Bucket 5

“brahm”:20
“jabberwocky”:11

Rehash if the load factor is too high

Problem: we only use 6/12

/ buckets!

Bucket 5

Hash function: string.length() % 6

“brahm”:20
“jabberwocky”:11

Bucket 11

Rehash if the load factor is too high

Solution: Change how much we

/ compress the string’s length

Bucket 5

Hash function: string.length() % 12

“brahm”:20

Bucket 11

“jabberwocky”:11

Compression functions

string.length() % nBuckets

Compression functions

string.length() % nBuckets

Hash function Compression function

Compression functions

string.length() % nBuckets
Hash function Compression function

When we rehash: Only this changes!

nBuckets: 6
Our HashMap<int, int> @ﬂmae J

Hash function

Compression function

Map. put(3,7) =t

- —_ Hash function

_ Compression function

I

Map.put(16,10) @33336}

[(16, 10)]—_ Hash function

_ Compression function

I

Map.get(16) [25?22353) }

— _ Hash function

_ Compression function

I

return 10

. nBuckets:
RehaShlng [nzlems:c 3 ° J

Hash function

Compression function

. nBuckets:
Rehashing [nzlemsf 3 12}

1. Make new buckets
array

Hash function

_ Compression function
5

11

. nBuckets:
Rehashing [nzlemsf 3 12}

1. Make new buckets array

S Hash function
2. Put everything in new array

_ Compression function
5

11

How to not be hacked

Deep in the servers of facebook...

Email Password
brahm@stanford.edu banter
cgregg@stanford.edu typewriters
cheson@stanford.edu ILoveC++
elonmusk@tesla.com electriccar

b.wayne@wayneenterprises.com nanananabatman

Deep in the servers of facebook...

N\

Email / Password \
brahm@stanford.edu banter \
cgregg@stanford.edu typewriters ‘
cheson@stanford.edu ILoveC++
elonmusk@tesla.com electriccar
b.wayne@wayneenterprises.com \ nanananabatman /

N

A hacker could see these passwords!

|dea #1: store the length of the password instead

Email Password length
brahm@stanford.edu 6
cgregg@stanford.edu 11
cheson@stanford.edu 8
elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

|dea #1: store the length of the password instead

Email Password length
brahm@stanford.edu 6
cgregg@stanford.edu 11
cheson@stanford.edu 8
elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

Pros: Hackers can’t see passwords in the
database and can’t reverse-engineer the
passwords from their length

Cons: Any string of length 6 can log into Brahm’s
account!

|dea #1: store the length of the password instead

Email Password length
brahm@stanford.edu 6
cgregg@stanford.edu 11
cheson@stanford.edu 8
elonmusk@tesla.com 11

b.wayne@wayneenterprises.com 14

Pros: one-way function Cons: not well-distributed

We need a function that is...

Deterministic

We need a function that is...

Fast

We need a function that is...

Well-distributed

We need a function that is...

One-way

We need a function that is...

Deterministic fbt

Properties of hash functions
Fast

1.
WB"-dIS’[I‘IbU’[Bd % Well distributed output

One-way

Cryptographic hash functions

A hash function that is also one-way

Cryptographic hash functions

One-way: extremely difficult to computationally reverse

Cryptographic hash functions

Small changes in the password lead to large changes in the hash

“banter” hashes to ef6571a62275adbb8b5cbd4ef9875a37
“Banter” hashes to c0027b4342d084balfb8a04d8e514ab2

What that would look like

Email

Password hash

brahm@stanford.edu

ef6571a62275adbb8b5cbd4ef9875a37

cgregg@stanford.edu

5111a48e448f2a8912606c60d70a42e4

cheson@stanford.edu

fecblce853fb5ae06cd4lecdbavbdlls5a

elonmusk@tesla.com

dfe095aal19143a860e3ecb43ff533710

b.wayne@wayneenterprises.com

67988dal2ad15278c841f0f06c69b209

What that would look like

Email

Password hash

brahm@stanford.edu

ef6571a62275adbb8b5cbd4ef9875a37

cgregg@stanford.edu

5111a48e448f2a8912606c60d70a42e4

cheson@stanford.edu

fecblce853fb5ae06cd4lecdbavbdlls5a

elonmusk@tesla.com

dfe095aal19143a860e3ecb43ff533710

b.wayne@wayneenterprises.com

67988dal2ad15278c841f0f06c69b209

Passwords can’t be re-engineered and every

password has its own hash!

23rd February, 2011

Security @& 110
'First ever' SHA-1 hash collision
calculated.

By John Leyden, Thomas Claburn and Chris Williams 23 Feb 2017 at 18:33

23rd February, 2011

Security @ 110
'First ever' SHA-1 hash collision
calculated. All it took were five clever
brains... and 6,610 years of processor
time

Tired old algo underpinning online security must die
now

By John Leyden, Thomas Claburn and Chris Williams 23 Feb 2017 at 18:33

One day later...

Security @R 49
Cloudbleed: Big web brands ‘'leaked
crypto keys, personal secrets' thanks
to Cloudflare bug

Heartbleed-style classic buffer overrun blunder

By lain Thomson in San Francisco 24 Feb 2017 at 01:47 SHARE v

What you're learning matters!

endl;

