CS 1068

| ecture 24: Depth First and
Breadth First Searching

Wednesday, August 9, 2017

Programming Abstractions
Summer 2017

Stanford University
Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 18.6

At this point In the quarter...

G
OP 3331 Exam 1

2 Short Answer Questions

11. [10 points] Name and describe the live key phases of software development.

. 4 o
(fid (v ohels 759 ’k*a.ini"n EL o

https://I.redd.it/eduylwsqgzizx.jpg

loday's lopics

®| Ogistics

¢ [railblazer: Due next Wednesday, no late days allowed.

oYEAH Hours today! Last YEAH hours!

e[-inal next Saturday! If you talked to me about having to leave before then, please
remind me so we can work out details.

e\lore on Graphs (and a bit on Trees)
eDepth First Search
eBreadth First Search

Trallblazer

CS 106B Trailblazer

v | Delay: 7

World:

map-stanford.txt

v UjLoadJ (136,471)

You create Google Maps!

You need to implement four
different (but related) types of
searches:

- Breadth First Search (today)
- Dijkstra (Wednesday, but will
have an additional video by

Saturday)

- A" (Wednesday, will also be
covered in additional video)
+Alternate (you must determine

algorithm) "

Wikipedia

O 0 O/SeaRx PLUe VG G;)GE-< WHIPEDIA
L

<« ->» c f:w"‘l‘q.vr}/.ﬁ’\t?/ﬁtﬂ-ﬂwj

et |

MIKE |979: I REPLACED MY SPARK PLUGS AND
NOW MY CAR 15 RUNNING WEIRD.

—

0 0 O/FRkoR Y +\]

< > GI o ,.u:;kg,.r;/wi/ﬁw‘-—""’,‘ @j\&

g"’. WIKPEDIA HAS A PROBLEM

TRY WAITING A FEx MINUTES AND RELOADING
“.Jw('c-“;:n.-i\ (CANT CONTACT THE DATABASE SERVER:
T UNKNOWN ERROR, (10.0.0.247))
O00 Messace Wity Mike 1979
MIKE 1979: I REPLACED MY SPARK PLUGS AND
NOW MY CAR 1S RUNNING WEIRD.

ME: \HAT IS A SPARK PLUG ?7?

ME: HELP
ME: WHAT Is A CAR??

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FOINTS,

XKCD 903, Extended Mind, http://xkcd.com/903/

http://xkcd.com/903/

Wikipedia

Foymm R e e }_/FT:\('\ — ~ When you hover over an XKCD

| - O[i";ﬂ“i"’”/f"”‘*"ﬂ . SEQ “ > C'[L:_:—-}L:f):g..,;/.-'u:/j'-i,f‘v"uj - :]@j& . |
Bt 73 [roelfem=ed][=o JE LT | R WIKIPEDIA HAS A PROBLEM COm|C, yOU get dl eXtra JOke:
F W SPHRK p_LUG_ | A | Ra2hy TRY WAITING A FEW NINUTES AND RELOADING

5 e _:_é::‘.;i RIGTIRIN Eﬁ | WikiPEDIA (C:MI&N;:;RT?S :;TA?P\S SERVER: |

Pophids i ~~~—f0D0 Messace wimi_Mike 1974 000 Messace witw Mike 1979 mg = = = = =
U = ey | MO 2 RPN s i D Wikipedia trivia: if you take
s = v ~, NOW MY OAR 1S RUNNING WEIRD. NOW MY AR IS RUNNING WEIRD.
v L TS ME THE SPARK GAP MIGHT BE OFF. ..) - I I- k th f- t
S || S Re vewowoekwm A prasR s 1D \MATIS A S UG any article, click on the firs
e | =5 || MIKE 1979 WHAT SHOULD THE GAP BE?

: WHAT IS A CAR??
| MET USUALLY RETWEEN 0.035” AND 0.070" ME R

I | ar roosesave sene | link In the article text not in

b | | parentheses or italics, and

A ———u = t === then repeat, you will eventually

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 FOINTS, end up at 1 PhiIOSOphy".

XKCD 903, Extended Mind, http://xkcd.com/903/

http://xkcd.com/903/

Wikipedia

Wikipedia trivia: if you take any article, click on the first link in the article text
not in parentheses or italics, and then repeat, you will eventually end up at
"Philosophy".

IS this true??

According to the Wikipedia article "Wikipedia:Getting to Philosophy" (so meta),
(https://en.wikipedia.org/wiki/Wikipedia:Getting to Philosophy):

AS of February 2016, 97% of all articles in Wikipedia eventually lead to the article
Philosophy.

How can we find out”? We shall see!

https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy

Graph Searching

Recall from the last couple of lectures that a graph is the "wild west of trees” —

graphs relate vertices (nodes) to each other by way of edges, and they can be
directed or undirected. Take the following directed graph:

o
oo
) 9&9 o

A search on this graph starts at
one vertex and attempts to find
another vertex. If it Is successful,

we say there Is a path from the
start to the finish vertices.

What paths are there from O to 67
0456
(&3] =6

0375056

Graph Searching

Recall from the last couple of lectures that a
graphs relate vertices (nodes) to each other

graph i1s the "wild west of trees” —
by way of edges, and they can be

directed or undirected. Take the following directed graph:

A search on this graph starts at
one vertex and attempts to find
another vertex. If it Is successful,
we say there Is a path from the
start to the finish vertices.

What paths are there from O to 67

0 3 7ehe e htE 6

&3] 3] ()46

e
s Ty
A\

-
o)

-~

Al -
- -
it eserrs

Graph Searching

What paths are there from 3 to 27 3@] &6 IS 2
J&]EHE s 2
a 3@] @ (&4 @ 6 @2

Graph Searching

What paths are there from 4 to 17

None! :(

Graph Searching

We have different ways to search graphs: @
Depth First Search: From the start vertex, G
explore as far as possible along each branch

pbefore backtracking. e

Breadth First Search: From the start vertex,
explore the neighbor nodes first, before e G
moving to the next level neighbors.

Both methods have pros and cons — let's G
explore the algorithms.

Depth First Search (DFS)

From the start vertex, explore as far as possible

along each branch before backtracking. e ° °

This is often implemented recursively. For a

graph, you must mark visited vertices, or you
might traverse forever (e.g., ceesfercse, .) o e 0

DFS from a to h (assuming a-z order) visits: Q

de |(dead end — backto c,f.e,nb,a) Notice: not the shortest!

N path found: as~dw-gwsh 1/

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
base case: If at vo, found!

mark v+ as visited. e Q Q
for all edges from v+ to its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2).

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ 10 Its neighbors: Q G
if neighbor n is unvisited, recursively call dfs(n, v2).
Let's look at dfs from h to ¢; @ Q’G
Vertex Visited? ‘

false
false
false
false
false
false
false
false
false

Q

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ 10 Its neighbors: Q G
if neighbor n is unvisited, recursively call dfs(n, vo).
Let's look atdfs fromhtoc: [, . Map @ o
\ertex Visited? ‘
—@ (0

Q

call stack: false
false

false
false
false
false
false
true
false

— JQ -~ O O O T

dfs(h,c)

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark v1 as visited. e

for all edges from v+ 10 Its neighbors: Q G
if neighbor n is unvisited, recursively call dfs(n, vo).
Let's look at dfs fromhtoc: [, . Map @ © o
\ertex Visited? ‘
—@ O

Q

call stack: false
false

false
false
true
false
false
true
false

dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v1 to vo:
mark vq as visited.

o - SOV
for all edges from v+ 1o Its neighbors:
(N, Vo).

if neighbor n Is unvisited, recursively call dfs

(1
Let's look at dfs from h to C: Vertex Map @
Vertex Visited?
—g) ()

Q

call stack: true
false

false
false
true
false
false
true
false

dfs(a,c)
dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Depth First Search (DFS): Recursive pseudocode
b

% o

Let's look at dfs from h to C: Vertex Map @ © G
Vertex Visited?
—g) ()

call stack: a true
b true

C false

d false

e true

dfs(b,c) f false

dfs(a,c) g false

dfs(e,c) h true

dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h 10 ¢ [g riex Man c e’°
Vertex Visited? ‘
call stack: a true @ h @
b true
C false
d true
e true
dfs(d,c) f false
dfs(a,c) g false
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:

mark v4 as visited. 3
for all edges from v+ 1o Its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2).

b

O
> o

)
Let's look at dfs from h to ¢; Vertex Map c .
Vertex Visited? ‘
call stack: ° e J h @
b true
C false
d true
dfs(g,c) e true
dfs(d,c) f false
dfs(a,c) g true
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:

mark v4 as visited. 3
for all edges from v+ 1o Its neighbors:

if neighbor n is unvisited, recursively call dfs(n, v2).

b

O
> o

)
| d e
Let's look at dfs from hto ¢ 1y o ey Map ’
Vertex Visited? ‘
call stack: a rue Y " @
b true
C false
d true
d—f&(g;%) e true
dfs{d;e) f true
é—'ﬁ&(aTe) g true
dfs(e,c) h true
dfs(h,c) | false

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢: Vertex Map

Vertex Visited?
true
true
false
true
true
true
true
true
false

Q

call stack:

dfs(f,c)
dfs(e,c)
dfs(h,c)

— JQ -~ O O O T

Depth First Search (DFS): Recursive pseudocode

dfs from v+ 10 vo:
mark v1 as visited.
for all edges from v+ 1o Its neighbors:
if neighbor n is unvisited, recursively call dfs(n, vo).

Let's look at dfs from h to ¢;

Vertex Map
Vertex Visited?
call stack: 2 true
b true
C true
d true
e true
\,| dfs(c,c) f true
O dfs(f.c) ; rue
(% dfs(e,c) H true
dfs(h,c) | false

Depth First Search (DFS): Iterative pseudocode

dfs from vq to vo:
create a stack, s e

sS.push(v4) Q Q
while s IS not empty: %
V = 8.pop)
if v has not been visited: a e G
mark v as visited ‘

push all neighbors of v onto the stack Q

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s is not empty:

V = S.pop() ’ e
if v has not been visited: 4

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
d false

push N e false

f false

g false

h false

h | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo: e @ Q
create a stack, s %

3.push(v4)

while s Is not empty: G G G
V = S.pop() ‘ ’ e anaee
if v has not been visited: Q @ 4
h :

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

v = S.pop() f false

g false

vin h true

| false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo: e @ Q
create a stack, s %

3.push(v4)

while s Iis not empty: G G G
V= S-pOpO ‘ ’ LI
if v has not been visited: @ @ 2
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

- gtacks b false
Let's look at dfs from h to c: c false
d false

N while loop: e false
oush all f false
neighbors of n g false

f h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s Is not empty:

(4) e —@
pond Sy FE—
if v has not been visited: @ @ 4
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

V= S.pop(f true

g false

vil h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 to vo: e @ Q
create a stack, s %
3.push(v4)
while s Is not empty:

(4) e —@
pond Sy FE—
if v has not been visited: @ @ 4
h E

. Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

e stack s T T T b false
Let's look at dfs from h to c: c false
d false

N while loop: e false
oush all f true
neighbors of f g false

C h true

e | false

Depth First Search (DFS): Iterative pseudocode

dfs from v1 tO vo:

create a stack, s e @
3.push(v4)

while s is not empty: G

o —&
V = S.pop() ’ e
if v has not been visited: : @ 4

C

. @ Vertex Map
mark v as visited Vertex Visited?
push all neighbors of v onto the stack a false

T Ak S T b false
Let's look at dfs from h to c: c false
in while loop: d :a:se

e alSe

v =5.pop() f true

g false

V. C C h true

found — stop! e i false

Depth First Search (DFS)

Both the recursive and iterative solutions to DFS
were correct, but because of the subtle
differences In recursion versus using a stack, they
traverse the nodes in a different order.

For the h to ¢ example, the iterative solution
happened to be faster, but for different graphs the
recursive solution may have been faster.

To retrieve the DFS path found, pass a collection
parameter to each cell (if recursive) and choose-

explore-unchoose (our old friend, recursive
backtracking!)

ON -
9 G‘f

Q‘ y

h

0

Depth First Search (DFS)

DFS is guaranteed to find a path if one exists.

t iIs not guaranteed to find the best or shortest path! (i.e., it is not optimal)

Breadth First Search (BFS)

From the start vertex, explore the neighbor
nodes first, before moving to the next level
neighbors.

This isn't easy to implement recursively. The
terative algorithm is very similar to the DFS
terative, except that we use a queue.

BFS from a to | (assuming a-z order) visits:

d g b -
as=d rneighbors of a
ase -
A~ dsmgH

aﬂi@:d@]p (neighbors of d Notice: the shortest!
Pl

A Jrshes path: a=dw-hee| q/

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 tO vo:

create a queue of paths (a vector), g
g.enqueue(vi path) a Q Q
while g Is not empty and vz Is not yet visited: %

path = g.dequeue() a

v = last element In path

f v IS not visited:
mark v as visited Q
f v Is the end vertex, we can stop.
for each unvisited neighbor of v:

make new path with v's neighbor as last element
engueue new path onto g

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 t0 vo:

create a queue of paths (a vector), g e Q G
g.enqueue(vs path)
while g is not empty and vz is not yet visited:

path = g.dequeuel()
v = last element in path Q e G
If v Is not visited:

mark v as visited

if v Is the end vertex, we can stop.

for each unvisited neighbor of v: @ G

make new path with v's neighbor as last element
engueue new path onto g

-- : Visited Set:
Let's look at bfs from a to i: (empty)

queue:

Vector<\Vertex *> startPath
startPath.add(a)
g.engueue(startPath)

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

-- : Visited Set:

d

Let's look at bfs from a to I; a
Leue: front
. | ae ad ab
N while loop:

curPath = g.dequeue() (path is a)

v = last element in curPath (v is a)

mark v as visited

enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element e e mmemmssmssmssssEEsEm=sss======--

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I; a

Leue: front o
. | abe ae ad
N while loop:

curPath = g.dequeue() (path is ab)

v = last element in curPath (v is b)

mark v as visited

enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element e e mmemmssmssmssssEEsEm=sss======--

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I; a

e front D
ueue:
5 adh adg abe ae d

N while loop:
curPath = g.dequeue() (path is ad)
v = last element in curPath (v is d)
mark v as visited
enqueue all unvisited neighbor paths onto o

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:

path

= g.dequeusl()

v = last element in path

if vis

not visited:

mark v as visited
if v Is the end vertex, we can stop.

for each unvisited neighbor of v:

make new path with v's neighbor as last element

engueue new path onto g

Let's look at bfs from a to I

queue:

IN wh
Cur
V =

front

aef adh adg abe

le loop:

mark v as vis
enqueue all L

Path = g.dequeue() (path is ae)
ast element in curPath (v is €)

ted
nvisited neighbor paths onto g

Visited Set:

®© O T O

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element e e mmemmssmssmssssEEsEm=sss======--

engueue new path onto g : o
"""""""""""""""""""""""""""""""""""""" Visited Set:
Let's look at bfs from a to I; a

e front D
ueue:
X aef adh adg d
. . e
N while loop:

curPath = g.dequeue() (path is abe)
v = last element in curPath (v is)
mark v as visited (already been marked, no need to enqueue neighbors)

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 t0 vo:

create a queue of paths (a vector), g

g.enqueue(vs path)

while g is not empty and vz is not yet visited:

path

v = last element in path

= g.dequeusl()

If v IS not visited:

mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:

make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to I

queue:

IN wh
Cur
V =

adgh aef

front
adh

le loop:

mark v as vis
enqueue all L

Path = g.dequeue() (path Is adg)
ast element in curPath (v is Q)

ted
nvisited neighbor paths onto g

Visited Set:

© O O O ©

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 t0 vo:

create a queue of paths (a vector), g

g.enqueue(vs path)

while g is not empty and vz is not yet visited:

path

v = last element in path

= g.dequeusl()

If v IS not visited:

mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:

make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to I

queue:

IN wh
Cur
V =

front
adhi adhf adgh aef

le loop:

mark v as vis
enqueue all L

Path = g.dequeue() (path is adh)
ast element in curPath (v is h)

ted
nvisited neighbor paths onto g

Visited Set:

> O O O O

Breadth First Search (BFS): Iterative pseudocode

bfs from v1 t0 vo:

create a queue of paths (a vector), g

g.enqueue(vs path)

while g is not empty and vz is not yet visited:

path

v = last element in path

if vis

= g.dequeusl()

not visited:

mark v as visited

if v Is the end vertex, we can stop.
for each unvisited neighbor of v:

make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to I

queue:

IN wh
Cur
V =

front
aefc adhi adhf adgh

le loop:

mark v as vis
enqueue all L

Path = g.dequeue() (path is aef)
ast element in curPath (v is f)

ted
nvisited neighbor paths onto g

Visited Set:

d

o
d
S
f

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element e e mmemmssmssmssssEEsEm=sss======--

engueue new path onto g ! o
"""""""""""""""""""""""""""""""""""""" ' Visited Set:
Let's look at bfs from a to i a

| front D

JUELS aefc adhi adhf d
. . e
N while loop: f
curPath = g.dequeue() (path is adgh)
v = last element in curPath (v is h) N

mark v as visited (already been marked, no need to enqueue neighbors)

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element e e mmemmssmssmssssEEsEm=sss======--

engueue new path onto g ! o
"""""""""""""""""""""""""""""""""""""" ' Visited Set:
Let's look at bfs from a to i a

. front D
JUELE: aefc adhi d
. . e
N while loop: f

curPath = g.dequeue() (path is adhf)
v = last element in curPath (v is f) N

mark v as visited (already been marked, no need to enqueue neighbors)

Breadth First Search (BFS): Iterative pseudocode

bfs from v to vo:
create a queue of paths (a vector), g
g.enqueue(vs path)
while g is not empty and vz is not yet visited:
path = g.dequeug()
v = last element in path
If v Is not visited:
mark v as visited
if v Is the end vertex, we can stop.
for each unvisited neighbor of v:
make new path with v's neighbor as last element
engueue new path onto g

Let's look at bfs from a to I

queue:

front
aefc adhi

N while loop:
curPath = g.dequeue() (path is adhi)
v = last element in curPath (v is i)
found!

Visited Set:

D —+~ O O O o

Wikipedia: Getting to Philosophy

The Free Encyclopedia

So | downloaded Wikipedia...

't turns out that you can download Wikipedia, but it is > 10 Terabytes (!)
uncompressed. [he reason Wikipedia asks you for money every so often Is

pbecause they have lots of fast computers with lots of memory, and this is
expensive (so donate!)

But, the Internet is just a graph...so, Wikipedia pages are just a graph...let's just g2
do the searching by taking advantage of this: download pages as we need themys= -

Wikipedia: Getting to Philosophy

The Free Encyclopedia

What kind of search is the "getting to philosophy" algorithm??
"Clicking on the first lowercase link in the main text of a Wikipedia article, and
then repeating the process for subsequent articles, usually eventually gets one
to the Philosophy article.”

This Is a depth-first search! To determine if a Wikipedia article will get to

Philosophy, we just select the first [ink each time. It we ever have to select a
second link (or if a first-link refers to a visited vertex), then that article doesn't get &%,
to Philosophy. A

Wikipedia: Getting to Philosophy

The Free Encyclopedia

We can also perform a Breadth First Search, as well. How would this change our
search”

A BFS would look at all links on a page, then all links for each link on the page,
etc. This has the potential of taking a long time, but it will find a shortest path.

References and Advanced Reading

 References:

Depth

Breadt

* Advanced Reading:
e\/isualizations:

all

0S://WWW.CS.US

‘ca.eo

-irst Search, Wikipedia: https://en.wikipedia.org/wiki/Depth-first search

u/~Qa

N First Search, Wikipedia: https://en.wikipedia.org/wiki/

Breadth-first search

es/visua

ization/

.Ntm

Nttps://WWW.CS.US’

‘ca.eo

u/~Qa

es/visua

ization/

.Ntm

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://www.cs.usfca.edu/~galles/visualization/BFS.html

Extra Slides

Breadth First Search (BFS): Tree searching

A Breadth First Search on a tree will produce a "level order traversal”:

Breadth First Search: awbwce-de-esgre-he-foe

This Is necessary If we want to print the tree to the screen in a
oretty way, such that it retains its tree-like structure.

