
Tuesday, August 15, 2017

Programming Abstractions

Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 19

CS 106B
Lecture 27: Inheritance
and Polymorphism in C++

Today's Topics

•Logistics
•Final Exam prep online: http://web.stanford.edu/class/cs106b/handouts/final.html
•Final Review Session: STLC 111, 6:30-7:30pm, Thursday August 17th
•Final exam is on Saturday, August 19th at 8:30am.

•Inheritance and Polymorphism in C++
•PDF for code: http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/
code/InheritancePolymorphismExamples.pdf

http://web.stanford.edu/class/cs106b/handouts/final.html
http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/code/InheritancePolymorphismExamples.pdf
http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/code/InheritancePolymorphismExamples.pdf
http://web.stanford.edu/class/cs106b//lectures/27-Inheritance/code/InheritancePolymorphismExamples.pdf

Inheritance in C++
inheritance: A way to form new classes based on
existing classes, taking on their attributes/behavior.

• a way to indicate that classes are related
• a way to share code between two or more related

classes (a hierarchy)

One class can extend another, absorbing its data/behavior.
• superclass (base class): Parent class that is being extended.
• subclass (derived class): Child class that inherits from the superclass.

• Subclass gets a copy of every field and method from superclass.
• Subclass can add its own behavior, and/or change inherited behavior.

GObject Hierarchy
The Stanford C++ library contains a hierarchy of graphical objects based on a
common base class named GObject.
• GArc, GCompound, GImage, GLabel, GLine, GOval,
GPolygon, GRect, G3DRect, GRoundRect, ...

GObject Members
GObject defines the state and behavior common to all shapes:

• contains(x, y)
• getColor(), setColor(color)
• getHeight(), getWidth(), getLocation(), setLocation(x, y)
• getX(), getY(), setX(x), setY(y), move(dx, dy)
• setVisible(visible)
• toString()

The subclasses add state and behavior unique to them:
GLabel:
• get/setFont
• get/setLabel
•
• ...

GLine:
• get/setStartPoint
• get/setEndPoint
•
• ...

GPolygon:
• addEdge
• addVertex
• get/setFillColor
• ...

Example: Employees
Imagine a company with the following employee regulations:
• All employees work 40 hours / week.
• Employees make $40,000 per year plus $500 for each year worked,

• except for lawyers who get twice the usual pay, 
and programmers who get the same $40k base but $2000 for each year worked.

• Employees have 2 weeks of paid vacation days per year,
• except for programmers who get an extra week (a total of 3).

• Employees should use a yellow form to apply for leave,
• except for programmers who use a pink form.

Each type of employee has some unique behavior:
• Lawyers know how to sue.
• Programmers know how to write code.
• Secretaries know how to take dictation.
• Legal Secretaries know how to take dictation and how to file legal briefs.

Employee Class
// Employee.h
class Employee {
public:
 Employee(string name, int years);
 virtual int hours() const;
 virtual string name() const;
 virtual double salary() const;
 virtual int vacationDays() const;
 virtual string vacationForm() const;
 virtual int years() const;

private:
 string myName;
 int myYears;
};

// Employee.cpp
Employee::Employee(string name, int years) {
 myName = name;
 myYears = years;
}

int Employee::hours() const {
 return 40;
}

string Employee::name() const {
 return myName;
}

double Employee::salary() const {
 return 40000.0 + (500 * myYears);
}

int Employee::vacationDays() const {
 return 10;
}

string Employee::vacationForm() const {
 return "yellow";
}

int Employee::years() const {
 return myYears;
}

Exercise: Employees
Exercise: Implement classes Lawyer and Programmer.

Lawyer
• A Lawyer remembers what law school he/she went to.

• Lawyers make twice as much salary as normal employees.

• Lawyers know how to sue people (unique behavior).

Programmer
• Programmers make the same base salary as normal employees, but

they earn a bonus of $2k/year instead of $500/year.

• Programmers fill out the pink form rather than yellow for vacations.

• Programmers get 3 weeks of vacation rather than 2.

• Programmers know how to write code (unique behavior).

Overriding
• override: To replace a superclass's member function by writing a new

version of that function in a subclass.
• virtual function: One that is allowed to be overridden.

• Must be declared with virtual keyword in superclass.
// Employee.h
virtual string vacationForm();

// Employee.cpp
string Employee::vacationForm() {
 return "yellow";
}

// Programmer.h
virtual string vacationForm();

// Programmer.cpp
string Programmer::vacationForm() {
 return "pink"; // override!
}

 If you "override" a non-virtual function, it actually just puts a second copy of that
function in the subclass, which can be confusing later.
 * Virtual has some subtleties. For example, destructors in inheritance hierarchies should always be
declared virtual or else memory may not get cleaned up properly; ugh.

Calling the Superclass Constructor
SubclassName::SubclassName(params) : SuperclassName(params) {
 statements;
}

To call a superclass constructor from subclass constructor, use an initialization
list, with a colon after the constructor declaration.

Example:
Lawyer::Lawyer(string name, string lawSchool, int years) :
 Employee(name, years) {
 // calls Employee constructor first
 mylawSchool = lawSchool;
}

Calling the Superclass Member
SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.

Example:
double Lawyer::salary() { // paid twice as much
 return Employee::salary() * 2;
}

Notes:
• Subclass cannot access private members of the superclass.
• You only need to use this syntax when the superclass's member has been

overridden.
• If you just want to call one member from another, even if that member came

from the superclass, you don't need to write Superclass:: .

Lawyer.h
#pragma once

#include "Employee.h"
#include <string>

class Lawyer : public Employee {
 // I now have an hours, name, salary, etc. method. yay!
public:
 Lawyer(string name, string lawSchool, int years);
 virtual double salary() const;
 void sue(string person);

private:
 string myLawSchool;
};

Lawyer.cpp
#include "Lawyer.h"

// call the constructor of Employee superclass?
Lawyer::Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {
 myLawSchool = lawSchool;
}

// overriding: replace version from Employee class
double Lawyer::salary() const {
 return Employee::salary() * 2;
}

void Lawyer::sue(string person) {
 cout << "See you in court, " << person << endl;
}

Perils of Inheritance (i.e., think before you inherit!)

Consider the following places you might use inheritance:
• class Point3D extends Point2D and adds z-coordinate
• class Square extends Rectangle (or vice versa?)
• class SortedVector extends Vector, keeps it in sorted order

What's wrong with these examples? Is inheritance good here?
• Point2D's distance() function is wrong for 3D points
• Rectangle supports operations a Square shouldn't (e.g. setWidth)
• SortedVector might confuse client; they call insert at an index, then

check that index, and the element they inserted is elsewhere!

Private Inheritance

class Name : private SuperclassName { ...

private inheritance: Copies code from superclass but does not publicly
advertise that your class extends that superclass.
• Good for cases where you want to inherit another class's code, but you

don't want outside clients to be able to randomly call it.
• Example: Have Point3D privately extend Point2D and add z-coordinate

functionality.
• Example: Have SortedVector privately extend Vector and add only the

public members it feels are appropriate (e.g., no insert).

Pure Virtual Functions

virtual returntype name(params) = 0;

pure virtual function: Declared in superclass's .h file and set to 0 (null). An
absent function that has not been implemented.
• Must be implemented by any subclass, or it cannot be used.
• A way of forcing subclasses to add certain important behavior.

class Employee {
 ...
 virtual void work() = 0; // every employee does
 // some kind of work
};

FYI: In Java, this is called an abstract method.

Multiple Inheritance
class Name : public Superclass1, public Superclass2, ...

multiple inheritance: When one subclass has multiple superclasses.
• Forbidden in many OO languages (e.g. Java) but allowed in C++.
• Convenient because it allows code sharing from multiple sources.
• Can be confusing or buggy, e.g. when both superclasses define a member

with the same name.

Example: The C++ I/O
streams use multiple
inheritance:

Polymorphism
polymorphism: Ability for the same code to be used
with different types of objects and behave differently
with each.
• Templates provide compile-time polymorphism.

Inheritance provides run-time polymorphism.

Idea: Client code can call a method on different kinds
of objects, and the resulting behavior will be different.

draw()
erase()

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

Polymorphism and Pointers
A pointer of type T can point to any subclass of T.

Employee* edna = new Lawyer("Edna", "Harvard", 5);
Secretary* steve = new LegalSecretary("Steve", 2);
World* world = new WorldMap("map-stanford.txt");

When a member function is called on edna, it behaves as a Lawyer.
• (This is because the employee functions are declared virtual.)
• You can not call any Lawyer-only members on edna (e.g. sue). 

You can not call any LegalSecretary-only members on steve (e.g.
fileLegalBriefs).

But why?
A pointer of type T can point to any subclass of T.

Employee* tom = new Lawyer("Cori", "Stanford", 5);

Subclass of EmployeePointer of type Employee
• COMPILE TIME: Determine whether the function exists according to the

type T (e.g. sue does not exists in Employee) since the compiler
doesn't know what the type of the object might be (it may be Lawyer,
Programmer, etc.)

• RUN TIME: Run the function according to the actual object type (since
we know the type of the object)

Polymorphism Example
You can use the object's extra functionality by casting.
Employee* edna = new Lawyer("Edna", "Harvard", 5);
edna->vacationDays(); // ok
edna->sue("Stuart"); // compiler error
((Lawyer*) edna)->sue("Stuart"); // ok

You should not cast a pointer to something that it is not.
• It will compile, but the code will crash (or behave unpredictably) when

you try to run it

Employee* angela = new Programmer("Angela", 3);
angela->code(); // compiler error
((Programmer*) paul)->code(); // ok
((Lawyer*) paul)->sue("Marty"); // crash!

Polymorphism Mystery

class Snow {
public:
 virtual void method2() {
 cout << "Snow 2" << endl;
 }
 virtual void method3() {
 cout << "Snow 3" << endl;
 }
};

class Rain : public Snow {
public:
 virtual void method1() {
 cout << "Rain 1" << endl;
 }
 virtual void method2() {
 cout << "Rain 2" << endl;
 }
};

class Sleet : public Snow {
public:
 virtual void method2() {
 cout << "Sleet 2" << endl;
 Snow::method2();
 }
 virtual void method3() {
 cout << "Sleet 3" << endl;
 }
};

class Fog : public Sleet {
public:
 virtual void method1() {
 cout << "Fog 1" << endl;
 }
 virtual void method3() {
 cout << "Fog 3" << endl;
 }
};

Diagramming classes
Draw a diagram of the

classes from top
(superclass) to bottom.

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3
Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

Mystery Problem

Snow* var1 = new Sleet(); 
var1->method2(); // What's the output?

To find the behavior/output of calls like the one above:
1. Look at the variable's type. 

If that type does not have that member: COMPILER ERROR.
2. Execute the member. 

Since the member is virtual: behave like the object's type,
not like the variable's type.

Example 1
Q: What is the result of
the following call?

Snow* var1 = new Sleet();
var1->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 1
Q: What is the result of
the following call?

Snow* var1 = new Sleet();
var1->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 2
Q: What is the result of
the following call?

Snow* var2 = new Rain();
var2->method1();

A. Snow 1

B. Rain 1

C. Snow 1
Rain 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 2
Q: What is the result of
the following call?

Snow* var2 = new Rain();
var2->method1();

A. Snow 1

B. Rain 1

C. Snow 1
Rain 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 3
Q: What is the result of
the following call?

Snow* var3 = new Rain();
var3->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Example 3
Q: What is the result of
the following call?

Snow* var3 = new Rain();
var3->method2();

A. Snow 2

B. Rain 2

C. Sleet 2
Snow 2

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Mystery with type cast
Snow* var4 = new Rain();
((Rain *) var4->method1(); // What's the output?

If the mystery problem has a type cast, then:
1. Look at the cast type. 

If that type does not have the method: COMPILER ERROR.
(Note: if the object's type was not equal to or a subclass of
the cast type, the code would CRASH / have unpredictable
behavior.)

2. Execute the member. 
Since the member is virtual: behave like the object's type,
not like the variable's type.

Example 4
Q: What is the result of
the following call?

Snow* var4 = new Rain();
((Rain *) var4)->method1();

A. Snow 1

B. Rain 1

C. Sleet 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 4
Q: What is the result of
the following call?

Snow* var4 = new Rain();
((Rain *) var4)->method1();

A. Snow 1

B. Rain 1

C. Sleet 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 5
Q: What is the result of
the following call?

Snow* var5 = new Fog();
((Sleet *) var5)->method1();

A. Snow 1

B. Sleet 1

C. Fog 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 5
Q: What is the result of
the following call?

Snow* var5 = new Fog();
((Sleet *) var5)->method1();

A. Snow 1

B. Sleet 1

C. Fog 1

D. COMPILER ERROR

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

cast

object

Example 6
Suppose we add the following
method to base class Snow:

virtual void method4() {
 cout << "Snow 4" << endl;
 method2();
}
What is the output?
Snow* var6 = new Sleet();
var6->method4();

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

object

Answer?
Snow 4
Sleet 2
Snow 2

(Sleet's method2 is used because
method 4 and method2 are virtual)

Example 7
What is the output of the
following call?
Snow* var7 = new Sleet();
((Rain*) var7)->method1();

method2()
method3()

method1()
method2()
(method3())

Rain Sleet

Fog

method2()
method3()

method1()
method2()
method3()

Snow

Snow 3
Snow 2

Fog 3

Rain 2
Snow 3

Rain 1
Sleet 3

Sleet 2 / Snow 2

Sleet 2 / Snow 2
Fog 1

variable

objectcastA. Snow 1

B. Sleet 1

C. Fog 1

D. COMPILER ERROR

E. CRASH / UNDEFINED

References and Advanced Reading

•References:
•C++ Inheritance: https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
•C++ Polymorphism: https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

•Advanced Reading:
•http://stackoverflow.com/questions/5854581/polymorphism-in-c
•https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm
http://stackoverflow.com/questions/5854581/polymorphism-in-c
https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

