CS 106B
| ecture 3: Vectors, Grids,

Big O -
1zo0 F lg(n) — * _
n ---—
n * lg{n) - :;
Wednesday, June 28, 2017 Lo nrr2 — }
P XX - fa’:’
E 200 F ({,’; -
= s 2
600 [/i .
¢ L
Programming Abstractions /" h
100 F i ’
Summer 2017 =
Stantord University bao - L, e _
Computer Science Department (. T
. e
: 0 2 4 o 2 10 12 14 1é 18 20
Lecturer: Chris Gregg Problem Size, n

reading:
Programming Abstractions in C++, Chapters
5.1-5.2, Section 10.2

loday's lopics

Logistics:
Chris's office hours will be:
Monday 12pm-1pm
+luesday S5pm-6pm
Held In Gates 191
- YEAH Hours for HW 1 will be:
- Tonight (Wednesday), 7pm-8pm in ...

- A note on the honor code

Review

» \ectors

Grids

Introduction to Computational Complexity and "Big O"
Reading Assignment: Chapter 5.1-5.2, Section 10.2

A Note on the Honor Code

*HoNor code handout:
http://web.stanford.edu/class/cs106b/handouts/3-HonorCode.pdf

http://web.stanford.edu/class/cs106b//handouts/3-HonorCode.pdf

Reference Example

o|/V/ith references, you can write a swap function to swap two integers, because you
can access the original variables;:

/ %
* Places a's value into b and vice versa.
*/
void swap(int &a, int &b) {
int temp = a;
a = b;
b = temp;
}

e Answer: the original variables are changed, because they are passed as
references |

[ricky Reference Mystery Example

What is the output of this code” Talk to your neighlbor!

void mystery(int& b, int ¢, inté& a) {
at++;
b--;
c += a;

}

int main() {
int a
int b
int c
mystery(c, a, b);
cout <K a KK "' " KKK b KK " "KLK c LKL endl;
return O;

i
o N U

°
’
°
’
°
’

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples (F 4 2

[ricky Reference Mystery Example

What is the output of this code”

void mystery(int& b, int ¢, inté& a) {
at++;
b--;
c += a;

}

int main() {
int a
int b
int c
mystery(c, a, b);
cout <K a KK "' " KKK b KK " "KLK c LKL endl;
return O;

i
o N U

°
’
°
’
°
’

Note: please don't obfuscate your code like this! :(
See the International Obfuscated C Contest for much, much worse examples (F 4 2

Quadratic Exercise -- how do you return multiple things?

o A quadratic equation for variable x is one of the form:
ax? + bx +c = 0, forsome numbers a, b, and c.

* [he two roots of a quadratic equation can be found using _h+ 2
the quadratic formula at right. b* \/b dac
2a

eExample: The roots of x2-3x-4=0 are x=4 and x=-1

eHow would we write a function named quadratic to solve quadratic equations?
e\\Vhat parameters should it accept?

o\\Vhich parameters should be passed by value, and which by reference?
o\Nhat, if anything, should it return?

e\/\/e have choices!

Quadratic Exercise -- how do you return multiple things?

/ %
* Solves a quadratic equation ax”"2 + bx + ¢ = 0,
* storing the results in output parameters rootl and root2.
* Assumes that the given equation has two real roots.
*/
volid quadratic (double a, double b, double c,
double& rootl, double& root2) {
double d = sqrt(b * b - 4 * a * ¢c);
rootl (-b +d) / (2 * a); —bi\/b2—4ac
root2 (-b - d) / (2 * a);
} 2a

eHow are we "returning” the results” Answer: by reference
o\Vhat other choices could we have made? Talk to your neighbor!

Quadratic Exercise -- how do you return multiple things?

eP0ossible choices:

e\\le could have returned a boolean if the roots were imaginary

¢\\Ve could have added extra parameters to support some form of
imaginary numbers

¢\\Ve could have called an error function inside this function (but that is not
always a good idea -- functions like this should generally have an
interface through the parameters and/or return value, and should
gracefully fail _b++/b? —4dac
¢\\Ve could have re-written the function as two functions that
return either the positive or negative root, without using 2a
references.

e\\e could have returned a Vector<double> object (tricky syntax!)

Vectors and Grids

+ One of the most powerful aspects of C++ is the abillity to have a "collection™:

Vector Grid Map

Stack Queue Set

- We will talk about all of these as we go through CS 106B, but you will need to
use the Vector and Grid classes for Fauxtoshop.

Vector

- What is it”
- Like a Java ArrayList<type>
- A list of elements that can grow and shrink.
+ Each element has a place (or index) in the list.
+ Advanced array.
Important Detalls
- Constructor creates an empity list.
+ Bounds checks.
- KNows Its size.
+ Include “vector.nh”
- \Why not use arrays”

Creating a Vector

Vector<int> vec;

You must specity the type of your vector.
When a vector Is created 1t is initially empty.

Vectors are just arrays under the hood!

Vector<int> magic;
magic.add(4);
magic.add(8);
magic.add(15);
magic.add(16);

cout << magic[2] << endl;

magic: A
15 | 16

O

But they have useful functions, like size()

for(int i 0; i < magic.size(); i++) {
cout << magic[i];

| Output: 4
Mmaglc. 8
15

0 1 2 3
16
4 15 | 16

You can use "for each” loops on containers:

for(int value : magic) {
cout << wvalue << endl;

'
Output: 4
o 8
Mmaglc. ; 1 , : 15

16
4 ')

Vector Methods

vec.size ()
Returns the number of elements in the vector.

vec.1sEmpty ()
Returns true if the vector is empty.

vec|[1]
Selects the ith element of the vector.

vec.add (value)
Adds a new element to the end of the vector.

vec.insert (1ndex, value)
Inserts the value before the specified index position.

vec.remove (1ndex)
Removes the element at the specified index.

vec.clear ()
Removes all elements from the vector.

For the exhaustive list check out:

http://stanford.edu/~stepp/cppdoc/Vector-class.html

http://stanford.edu/~stepp/cppdoc/Vector-class.html

The Grid Container

Grid<type>

(WELCOME TO
THE mATRIx WY

Grid

- What is it/
- Advanced 2D array.
- Ihink spread sheets, game boards

Important Detalls

- Default constructor makes a grid of size O
+ Doesn’t support “ragged rignt”.

* Bounds checks

- KNows Its size.

- We could use a combination of Vectors to simulate a 2D
matrix, but a Grid is easier!

Creating a Grid

Grid<int> matrix(2,2);
matrix[0][0] = 42;
matrix[0][1l] = 6;
matrix[1][0] = matrix[0][1l];

cout <<
cout <<
cout <<
cout <<

matrix.numRows () << endl;
matrix[0][1l] << endl;
matrix[1l][1l] << endl;
matrix[2][3] << endl;

Creating a Grid

Grid<int> matrix(2,2);

matrix[0][0] = 42; O 1
matrix[0][1] = 6;

matrix[1][0] = matrix[O0][1l]; 0 42 o
cout << matrix.numRows () << endl

cout << matrix[0][1l] << endl; 1 B

cout << matrix[1l][1l] << endl;

cout << matrix[2][3] << endl;

X* XK kK

%% STANFORD C++ LIBRARY
*¥** An ErrorException occurred during program execution:
**¥* Grid:|:operator [J[]: (3, 2) is outside of valid range [(0, ©)..(2, 1)]

XK kK XK

Grid Methods

grid.numRows ()
Returns the number of rows in the grid.

grid.numCols ()
Returns the number of columns in the grid.

grid[1] []]

Selects the element in the it row and 5" column.

grid.resize (rows, cols)
Changes the dimensions of the grid and clears any previous contents.

grid.inBounds (row, col)
Returns true if the specified row , column position is within the grid.

For the exhaustive list check out:
http://stanford.edu/~stepp/cppdoc/Grid-class.html

http://stanford.edu/~stepp/cppdoc/Grid-class.html

Grid Example: Traversing a Grid

void printGrid(Grid<Candy> & grid) {
for(int r = @; r < grid.numRows(); r++) {

for(int ¢ = @; ¢ < grid.numCols(); c++) {
throwCandy(grid[r] [cl);
}
}
} 0 1
0
1

2 SM’/([E .W&’I{[ﬂ

Collections

1. Defined as Classes
This means they have constructors and member functions

2. Templatized
They have a mechanism for collecting different variable types

3. Deep copy assignment
Often pass them by reference!

Collection Common Pitfalls

1. Vector numbers;
Needs a type! Should be: Vector<int> numbers;

2. void myFunction(Grid<bool> gridParam);
Two issues: (a) If you want gridParam to be changed in the

calling function, you're out of luck. (b) inefficient because you
have to make a copy of gridParam.

Collection Common Pitfalls

3. void cout(Grid<bool> & grid) {
for(int i = 0; i < grid.numRows(); i++) {
for(int j = 0; J < grid.numCols(); Jj++) {
cout << grid[J][1];

}

Watch your variable ordering! Better to use r
for rows, ¢ for columns.

| et's Code Instagram!

Mike Krieger, Stanford Class of 2008

Founder of Instagram
e K ‘.~ -

A Color is an int, and and Image is just a Grid<int>!

A Color is an int, and and Image is just a Grid<int>!

Original Filtered

New Pa\ette

=
3
@,
O
”
—
D
—

Computational Complexity

| | | | | E !' 1 1 | |
|
1400 '! rl il
()
1zo0 | lgin) — ; -
n mm—— .;.;.
n * lg{n) - ?
1000 F nx*p — ‘ il
arr3 — f
PR - a‘:,'

= 200 [i -

- ¥

&= ;." .,'.
600 |- /i -

s I
!
PR
100 | £ 1
/’ 2 L -
.".’ ," _'_.-f
/.r P fﬂ-
200 - il
.‘ .. -’_F'__F"

0 2 4 o 2 10 12 14 1é 18 20
FProblem Siz=e, n

Computational Complexity

How does one go about analyzing programs to compare how the program
behaves as it scales? E.q., let's look at a vectorMax () function:

1nt ‘vectorMax(Vector<int> &v){
| int currentMax = v[0]:
int n = v.size();
for (int i=1; i < n3; i++){
if (currentMax < vI[i]) {
currentMax = vI[il;
s

h

return currentMax;

i]
b q
a
» [
X \

\

i’ } |

3 b«
/]

a2 o R L S A A P =TS S S A R A D e S s S A SR B T A S BN SR e e Y S R e e S e R R A R SR i

What is n? Why is it important to this function?

Computational CompIeX|ty

1nt ‘vectorMax(Vector<int> &v){
' int currentMax = vI[0]:
int n = v.size():
for (int i=1; i < n; i++){ |
if (currentMax < v[il) { |

currentMax = vli];

h
h

return currentMax;

b 2
b ¥
1)
" A
’
i } .
/ /) 3
| PR EE P Re e o R D DO oon e o o fanae oo o o g o e o Py PP—— e Bt T i oo c o B o B i e " e . P - X

f we want to see how this algorithm behaves as n changes, we could do the following:

(1) Code the algorithm in C++

(2) Determine, for each instruction of the compiled program the time needed to
execute that instruction (need assembly language)

(3) Determine the number of times each instruction is executed when the program is
run.

(4) Sum up all the times we calculated to get a running time.

Computational Complexity

1nt ‘vectorMax(Vector<int> &v){
int currentMax = v[0]:
int n = v.size():
for (int i=1; i < n; i++){ 3
if (currentMax < vI[i]) {
currentMax = vl[il];
+

h

return currentMax;

Steps 1-4 on the previous slide...might work, but it is complicated, especially for
today’s machines that optimize everything “under the hood.” (and reading
assembly code takes a certain patience).

Assembly Code for vectorl\AaxO funchon

| 0x000000010014adf0 <

0x000000010014adfl
0x000000010014adf4
0x000000010014adf8
0x000000010014adfa
0x000000010014adfe
0x000000010014ae02
0x000000010014ae07
0x000000010014a€09
0x000000010014ae0cC
0x000000010014ae10
0x000000010014ae15
0x000000010014a€18
0x000000010014aelf
0x000000010014ae22
0x000000010014ae25
0x000000010014ae2b
0x000000010014ae2e
0x000000010014ae32
0x000000010014ae35
0x000000010014ae38
0x000000010014ae3d
0x000000010014ae40
0x000000010014ae42
0x000000010014ae48
0x000000010014ae4c
0x000000010014ae4f
0x000000010014ae54
0x000000010014ae56
0x000000010014ae59
0x000000010014ae5e
0x000000010014ae61
0x000000010014ae64
0x000000010014ae67
0x000000010014aebcC
0x000000010014aebf
0x000000010014ae73

| 0x000000010014ac74

<+@>:

<+1>:

<+4>:

<+8>:

<+10>:
<+14>:
<+18>:
<+23>:
<+25>:
<+28>:
<+32>:
<+37>:
<+40>:
<+47>:
<+50>:
<+53>:
<+590>:
<+62>:
<+66>:
<+69>:
<+7/2>:
<+/7>:
<+80>:
<+82>:
<+88>:
<+92>:
<+95>:

<+100>:
<+102>:
<+105>:
<+110>:
<+113>:
<+116>:
<+119>:
<+124>:
<+127>:
<+131>:

pus orbp
mov %rsp,%rbp
sub $0x20,%rsp
Xor %esl,%esl
mov %rdi,—0x8(%rbp)
mov —0x8(%rbp),%rdi
callg 0x10014aea® <std::
mov (%rax),%sesi
mov %esi,—0xc(%rbp)
mov —0x8(%rbp),%rdi
callg 0x10014afb0@ <std::
mov %eax,—0x10(%rbp)
movl $0x1,-0x14(%rbp)
mov -0x14(%rbp) ,%eax
cmp -0x10(%rbp) ,%eax
jge
mov —-0xc(%rbp) ,%eax
mov —0x8(%rbp),%rdi
mov -0x14(%rbp) ,%esi
mov %eax,—0x18(%rbp)
callg 0x10014aea® <std::
mov -0x18(%rbp) ,%esi
cmp (%srax),%esi
jge
mov —0x8(%rbp),%rdi
mov -0x14(%rbp) ,%esi
callg 0x10014aea® <std::
mov (%rax),%sesi
mov %esi,—0xc(%rbp)
jmpq
mov —0x14(%rbp) ,%eax
add $0x1,%eax
mov %eax,—0x14(%rbp)
jmpq
mov —-0xc(%rbp),%eax
add $0x20,%rsp
pop %rbp

<+132>:

h .

__1::basic_ostream<char,

__1::basic_ostream<char,

0x10014aeb6c <vectorMax(Vector<int>&)+124>

__1::basic_ostream<char,

0x10014ae59 <vectorMax(Vector<int>&)+105>

__1::basic_ostream<char,

std::__1::char_traits<char> >::operator<<(long)+32>
std::__1::char_traits<char> >::operator<<(long)+304>
std::__1::char_traits<char> >::operator<<(long)+32>
std::__1::char_traits<char> >::operator<<(long)+32>

0x10014ae5e <vectorMax(Vector<int>&)+110>

0x10014aelf <vectorMax(Vector<int>&)+47>

1 _-;_“. & ::-_ :-_~ I
retq ==
LY
& ~ x A ey SRS ey R rrory el il e Sl ooy Sl Sl etk aEa B8 S il Jaeata Stk S Sl eSS St ek Sl TR = « e SN 33) o

Algorithm Analysis: Primitive Operations

Instead of those complex steps, we can define primitive
operations for our C++ code.

- Assigning a value to a variable

- Calling a function

+ Arithmetic (e.q., adding two numbers)
- Comparing two numbers

* Indexing into a Vector

- Returning from a function

We assign "1 operation” to each step. We are trying to gather &7,
data so we can compare this to other algorithms.

Algorithm Analysis: Primitive Operations

1nt vectorMax(Vector<int> &v){ |
int currentMax = v|[0]; &=—* tecuted once (2 ops)
int n = v.size() ; ¢——————ekecuted once (2 ops)
exe uted w'lzl;/l; Ny 1+ 1 executed n-1 times
oncel (1 op) ex. n times (n ops) =~ (2*(n-1) ops))

if (currentMax < v[i])g{
ex. n-1 times (2*(n-1) ops)

currentMax = v[i] ;e
} | ex. at most n-1 times
| (2*(n-1) ops), but as few as
1 | zero times

| return currentMax; k
y - ex.once(op)

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax () :

atleast: 2+ 2+ 1+n+4x(n—1)+1=5n-+2
atmost: 24+ 2+1+n+6x(n—1)+1="Tn

.e., If there are n items Iin the Vector, there are between 5n+2
operations and 7n operations completed in the function.

Algorithm Analysis: Primitive Operations

Summary:

Primitive operations for vectorMax () :

best case: Hn, + 2

worst case: n

INn other words, we can get a "best case” and "worst case”
count

Algorithm Analysis: Simpilify!

Do we really need this much detail”? Nope!
Let's simplity: we want a "big picture” approach.

't Is enough to know that vectorMax () grows

linearly proportionally to n

N other words, as the number of elements increases, the
algorithm has to do proportionally more work, and that
relationship Is linear. 8x more elements”? 8x more work.

Algorithm Analysis: Big-O

Our simplification uses a mathematical construct known as
‘Big-O” notation — think “O” as in “on the Order of.”

Wikipedia;

“‘Big-O notation describes the limiting behavior of a function when
the argument tends towards a particular value or infinity, usually in
terms of simpler functions.”

Algorithm Analysis: Big-O

Let f(n) and g(n) be functions mapping nonnegative integers to real num-
bers. We say that f(n) is O(g(n)) if there is a real constant ¢ > 0 and an
integer constant ng > 1, such that f(n) < cg(n) for every integer n > ng. This
definition is often referred to as the “big-Oh” notation. We can also say, “f(n)
is order g(n).”

g(n)

f(n)

Running Time

S

>
o

Input size

Algorithm Analysis: Big-O

Dirty little trick for figuring out Big-O: look at the numlber of steps
you calculated, throw out all the constants, find the “biggest
factor” and that's your answer:

Sn+ 2 1s O(n)

Why? Because constants are not important at this level of
understanding.

Algorithm Analysis: Big-O

We will care about the following functions that appear often In
data structures:

O(1) O(log n) Oo(n) O(n log n) o(n?) o(n*) (k=1) O(a") (a>1)

When you are deciding what Big-O is for an algorithm or function,
simplify until you reach one of these functions, and you will have
your answer.

Algorithm Analysis: Big-O

O(1) O(log n) o(n) O(n log n) o(n?) o(n*) (k=1) O(a") (a>1)

Practice: what is Big-O for this function

20m° + 10nlogn + 5

Answer: O(n3)

First, strip the constants: n® + n log n
Then, find the biggest factor: n°

Algorithm Analysis: Big-O

O(1) O(log n) o(n) O(n log n) o(n?) o(n*) (k=1) O(a") (a>1)

Practice: what is Big-O for this function

2000 logn+ 7nlogn+ 3

Answer: O(n log n)

-irst, strip the constants: logn + n log n
Then, find the biggest factor: n log n

Algorithm Analysis: Back to vectorMax()

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

1nt ‘vectorMax(Vector<int> &v){ |
| int currentMax = v[0]; '
int n = v.size():
for (int i=1; i < n; i++){ |
if (currentMax < v[il) { |
currentMax = v[il; '
+

¥

return currentMax;

Algorithm Analysis: Back to vectorMax()

1nt.vectorMax(Vector<1nt>1&v){ q'f
——&ﬁ%—ﬁ———¥rﬁéée++r——-
for (int i=1: i < n; i++){

it {eurrenthax——vlil) { |

When you are analyzing an algorithm or code for its computational complexity
using Big-O notation, you can ignore the primitive operations that would
contribute less-important factors to the run-time. Also, you always take the worst
case behavior for Big-O.

S0, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax Iin the loop.

Algorithm Analysis: Back to vectorMax()

1nt.vectorMax(Vector<1nt>1&v){lH'f
——&ﬁ%—ﬁ—-—vrséée++r——-

for (int i=1; i < n; i++){

S0, for vectorMax(): ignore the original two variable initializations, the return
statement, the comparison, and the setting of currentMax Iin the loop.

Notice that the important part of the function is the fact that the loop conditions
will change with the size of the array: for each extra element, there will be one
more iteration. This is a linear relationship, and therefore O(n).

Algorithm Analysis: Back to vectorMax()

Data: In the lecture
code, you will find
a test program for
vectorMax(), which
runs the function
on an Increasing
(loy powers of two)
number of vector
elements. This s
the data | gathered
from my computer.

AS you can see, It's
a linear relationsnhip!

Time (ms)

16000

14000

12000

10000

38000

6000

4000

2000

0

vectorMax()

100000000 200000000 300000000 400000000 500000000
Number of Elements

600000000

Algorithm Ana\y&s Nested Loops

lnt nestedLoopl (lnt n) { Also go through the outer loop

int result = 0; n times
for (int i=0; 1<n‘::;){

for (int J§=0;3j<n;j++){

resul t++\

} Inner loop comple ity: O(n)
}
, return result; Total complexity: O(n)
} (quadratic)

\n genera\ We don t Ilke O(nQ) behawor' Why’?

As an example: let's say an O(n?) function takes 5 seconds for a container with 100 elements.
How much time would it take if we had 1000 elements?

500 seconds! This is because 10x more elements is (104)x more timel

Algorithm Analysis: Nested Loops

1nt nestedLoopl(lnt n){
int result = 0;
for (int 1=0;1<n;1++) {
for (int 3J=0;3<n;Jj++) {
for (int k=0;k<n;k++)
result++;

}

return result;

Answer: n® (polynomial)
In real lite, this comes up in 3D iImaging, video, etc., and it is slow!

12 1s BEA:
:—-:' '-13
':\ f}‘$ J

Graphics cards are built with hundreds or thousands of processors to tackle this protlemt

Algorithm Analysis: Linear Search

v01d linearSearchVector(Vector<int> &vec, int numToFind){

int numCompares = 0; |
bool answer = false;
int n = vec.size();
Best case? O(1)
for (int 1 = 0; 1 < n; i++) A

numCompares++; Worst case? O(n)

if (vec[il==numToFind) A

answer = true;

break;
I3
I3
cout << "Found? " << (answer ? "True" : "False") << ", "
<< "Number of compares: " << numCompares << endl << endl;

Complexity: O(n) (linear, worst case)

You have to walk through the entire vector one element at a time.

Algorithm Analysis: Binary Search

There Is another type of search that we can perform on
a list that is in order: binary search (as seen in 106A!)

If you have ever played a "guess my number” game
betore, you will have implemented a binary search, If
you played the game efficiently!

The game Is played as follows:

- one player thinks of a number between O and 100 (or
any other maximum).

+ the second player guesses a number between 1 and
100

- the first player says "higher” or "lower," and the
second player keeps guessing until they guess
correctly.

Algorithm Analysis: Binary Search

The most efficient guessing algorithm for the number
guessing game Is simply to choose a number that Is
between the high and low that you are currently
bound to. Example:

bounds: 0, 100

guess: 50 (no, the answer Is lower)

new bounds: O, 49

guess: 25 (no, the answer is higher)

new bounds: 20, 49

guess: 33

etc.

With each guess, the search space Is divided into
[(WOo.

Algorithm Analysis: Bmary Search

v01d b1narySearchVector(Vector<1nt> &vec, 1nt numToFlnd) { B

int low=0;
int high=vec.size()-1;
int mid:
int numCompares = 0,
bool found=false;
while (low <= high) {
numCompares++;
//cout << low << ", " << high << endl;
mid = low + (high - low) / 2; // to avoid overflow
if (vec[mid] > numToFind) {
high = mid - 1,;
s

else if (vec[mid] < numToFind) {
low = mid + 1;

Best case? O(1)

Worst case? O(log n)

s

else {
found = true;
break;

I3

}

cout << "Found? " << (found ? "True" :
"Number of compares: " << numCompares << endl << endl;

"False") << ", " << |

Complexity: O(log n)
(logarithmic, worst case)
Technically, this is O(logzn),

out we will not worry about
the base.

The general rule for
determining if something is
logarithmic: if the problem is
one of "divide and conguer,’

it Is logarithmic. If, at each
stage, the problem size Is cut

in half (or a third, etc.), it is
logarithmic.

Algorithm Analysis: Constant Time

When an algorithm's time Is independent ot the number of elements in the container it holds,
this is constant time complexity, or O(1). We love O(1) algorithms! Examples include (for
efficiently designed data structures):

- Adding or removing from the end of a Vector.
Later In the course:
Pushing onto a stack or popping off a stack.
Engqueuing or dequeuing from a queue.
Inserting or searching for a value in a hash table

Algorithm Analysis: eExponential [ime

There are a number of algorithms that have exponential behavior. If we don't like quadratic or
polynomial behavior, we really don't like exponential behavior.

Example: what does the following beautiful recursive function do”

long mysteryFunc(lnt n) {
if (n == 0) A

return mysteryFunc(n-1) + mysteryFunc(n-2);

| return 0:
| h

: lf (n —— 1) '{
| return 1;
f +

This Is the fibonacci sequence! O, 1, 1, 2, 3, 5, 8, 13, 21 ...

Algorithm Analysis: eExponential [ime

[Tong fibonacci(int m) {

if (n==10) { Beautiful, but a flawed algorithm! Yes, it

return 0,
}f 1)t works, but why is it flawed? Let's look at
1 == .

return 1; the call tree for fib(0);
}

return fibonacci(n-1) + fibonacci(n-2); |

Algorithm Analysis: eExponential [ime

ong fibonacci(int m) €

if (n==10) { Beautiful, but a flawed algorithm! Yes, it

return 0,
}f 1)t works, but why is it flawed? Let's look at
1 == .

return 1; the call tree for fib(0);
}

return fibonacci(n-1) + fibonacci(n-2); f

i

Y

/) A
i }

fib(0)

fib(5) fib(4)

fib(4) fib(3) fib(3)

fib(3) W fib(2) fio(2) W@ fib(1) fib(2) fib(1)

fib(2) io(1) Look at all the functional duplication! Each

call (down to level 3) has to make two
recursive calls, and many are duplicated!

Flbonaccl Sequence Time to Calculate Recursively

Fibonacci Sequence

400

)

-c 350 '
S :
T R2=0.99892 -
(Vg :
S)50 :
5 ¢
(O 200 .

S .

2 150 ‘

O :

O 100 .‘.

+ 50 ,".

V e

£ - 0-0-0-0-0-0-0-0-0-0-0-0-0-0--9-0:0:-9

I_

N
U

30 35 40 45 50 55
Fibonacci Number

Ramifications of Big-O Differences

Some numbers:

f we have an algorithm that has 1000 elements, and the O(log n) version runs in 10
nanoseconds...

. . . : polynomial | exponential

O(1) O(log n) o(n) O(n log n) o(n?) o(n*) (k=1) O0O(a") (a>1)

1ns 10ns 1microsec 10microsec 1millisec 1 sec 10°°? years

Ramifications of Big-O Differences

Some numbers:

f we have an algorithm that has 1000 elements, and the O(log n) version runs in 10

milliseconads...
. . . : polynomial | exponential
O(1) O(log n) o(n) O(n log n) o(n?) o(n*) (k=1) O0O(a") (a>1)
I1ms 10ms 1sec 10sec 17 minutes 277 hours heat death of

the universe

Recap (Big O)

e Asymptotic Analysis / Big-O / Computational Complexity
o\\le want a "big picture” assessment of our algorithms and functions
e\\le can ignore constants and factors that will contribute less to the result!
*\le most often care about worst case behavior.
o\Ve love O(1) and O(log n) behaviors!
¢Big-O notation is useful for determining how a particular algorithm behaves, but be
careful about making comparisons between algorithms -- sometimes this Is helpful,
but it can be misleading.
e Algorithmic complexity can determine the difference between running your program
over your lunch break, or waiting until the Sun becomes a Red Giant and swallows
the Earth before your program finishes -- that's how important it is!

References and Advanced Reading (Big O)

*References:

o \Vikipedia on BigO: https://en.wikipedia.org/wiki/Big O notation

e Binary Search: https://en.wikipedia.org/wiki/Binary search algorithm
e Fibonacci numbers: https://en.wikipedia.org/wiki/Fibonacci number

Advanced Reading:

e Big-O Cheat Sheet: http://bigocheatsheet.com

e More details on Big-O: http://web.mit.edu/16.070/www/lecture/big o.pdf
e More details: http://dev.tutorialspoint.com/data_structures algorithms/
asymptotic _analysis.htm
e GPUs and GPU-Accelerated computing: http://www.nvidia.com/object/what-is-
gpu-computing.html

¢\/Ideo on Fibonacci sequence: https://www.youtube.com/watch?v=Nu-I\W-Ifyec
eibonacci numbers in nature: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/
Fibonacci/fibnat.html

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Fibonacci_number
http://bigocheatsheet.com
http://web.mit.edu/16.070/www/lecture/big_o.pdf
http://dev.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.htm
http://dev.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.htm
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
https://www.youtube.com/watch?v=Nu-lW-Ifyec
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

References and Advanced Reading (Vectors and Grids)

*References:
Stanford Vector Class: http://stanford.edu/~stepp/cppdoc/Vector-class.html
Stanford Grid Class: http://stanford.edu/~stepp/cppdoc/Grid-class.html

*Advanced Reading:
eStandard Template Library vector class (some different functions!): http://
www.cplusplus.com/reference/vector/vector/
e Adobe Photoshop on Wikipedia: https://en.wikipedia.org/wiki/Adobe Photoshop

http://stanford.edu/~stepp/cppdoc/Vector-class.html
http://stanford.edu/~stepp/cppdoc/Grid-class.html
http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/
https://en.wikipedia.org/wiki/Adobe_Photoshop

