
Monday, July 3, 2017

Programming Abstractions

Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 5.2-5.3

CS 106B
Lecture 5: Stacks and Queues

Today's Topics

•Logistics:
•LIFE due on Wednesday!
•No class tomorrow (Independence Day)

•Do we have to implement a Vector with an array?
•We can implement the Vector Abstract Data Type any way we want!
•Efficiency of element manipulation

•Stacks
•Queues

Real Life Cellular Automata?
A Lizard With Scales That Behave Like a Computer Simulation

https://www.nytimes.com/2017/04/12/science/ocellated-lizards-scales-cellular-automata.html?module=WatchingPortal®ion=c-column-middle-span-region&pgType=Homepage&action=click&mediaId=thumb_square&state=standard&contentPlacement=1&version=internal&contentCollection=www.nytimes.com&contentId=https%3A%2F%2Fwww.nytimes.com%2F2017%2F04%2F12%2Fscience%2Focellated-lizards-scales-cellular-automata.html%3F_r%3D0&eventName=Watching-article-click&_r=1

Vector ("dynamic array") Review

•Pop quiz: what gives better speed, inserting and removing at the beginning or at the
end of a Vector, and what is the Big O?

Answer: At the end (no moving of elements necessary) O(1)

•Pop quiz: If a Vector has n elements, and we are going to insert somewhere into the
Vector, what is the maximum number of elements that must be moved? Answer: n

•Pop quiz: If a Vector has n elements, and we are going to insert somewhere into the
Vector, what is the minimum number of elements that must be moved? Answer: 0

Vector: Actually an Abstract Data Type

•In the last class, we talked about how a Vector is implemented under the hood. And that
may be important to the user -- the user should know about the speed of the operations
so that he or she can make good choices about using the Vector.

•But -- is it necessary to implement a Vector with an array? We are going to switch gears a
bit and talk about Abstract Data Types (ADT), and the Vector actually counts as an ADT.

An abstract data type is a model that describes
how data is manipulated from the point of view of
the user. In other words, the user should get a set
of functions and behaviors that are identical
regardless of how the model is implemented.

Vector: Does the user care how it is implemented?

int main() {
 Vector<string> states;
 // manually add in alphabetic order
 states.add("California");
 states.insert(0,"Alaska");
 states.add("Texas");
 states.insert(3,"Utah");
 states.insert(2,"Nebraska");

 cout << "Originals: "
 << states.toString() << endl; // for testing

 // revolution happens
 states.remove(3); // Texas

 cout << "After removing Texas: "
 << states.toString() << endl;

 return 0;
}

Consider the following program that uses a Vector: From the perspective of the user,
the Vector class needs to have

certain behaviors, but the user isn't
really concerned with how those
behaviors are implemented under

the hood.

This is the idea behind an ADT --
the Vector needs to have add(),

insert(), and remove()
functions, but the fact that it is an

array under the hood is not relevant
if you just want certain behaviors.

So...

Vector: Implemented with Moon Monkeys®
We could imagine implementing the
Stanford Library Vector using Moon

Monkeys®, who keep all of our data on
the Moon, and simply pass back the

results of our functions as we need them.
 Vector<string> states;
 states.add("California");

For these statements, we call up the Moon
Monkeys, and say "we want a Vector that

holds strings," and then we radio up to them,
'Please add "California" to the Vector.'

Is this efficient? No. Does it meet the requirements of our Vector ADT? Yes.
That is the principle idea behind ADTs: the functional behavior is what

matters, not the implementation.

Stacks
A “stack” is another example of an abstract data type. A stack has the following behaviors /
functions:

push(value) (or add(value)) - place an entity onto the top of the stack
pop() (or remove()) - remove an entity from the top of the stack and return it
top() (or peek()) - look at the entity at the top of the stack, but don’t remove it
isEmpty() - a boolean value, true if the stack is empty, false if it has at least one element.
(note: a runtime error occurs if a pop() or top() operation is attempted on an empty stack.)

Why do we call it a "stack?" Because we model it using a stack of things:

4

2

5

7

3

PUSH POP

TOP

Stacks
The push, pop, and top operations are the only operations allowed by the
stack ADT, and as such, only the top element is accessible. Therefore, a
stack is a “Last-In-First-Out” (LIFO) structure: the last item in is the first one
out of a stack.

4

2

5

7

3

PUSH POP

TOP

Stacks
Despite the stack’s limitations (and indeed, because of them), the stack is a
very frequently used ADT. In fact, most computer architectures implement a
stack at the very core of their instruction sets — both push and pop are
assembly code instructions.

Stack operations are so useful that there is a stack built in to every program
running on your PC — the stack is a memory block that gets used to store
the state of memory when a function is called, and to restore it when a
function returns.

Why are stacks used to when functions are called?

Let’s say we had a program like this:

What happens to the state of the system as this program runs?

main() {
 function1();
 return;
}

function1() {
 function2();
 return;
}

function2() {
 function3();
 return;
}

Stacks

main calls function1, which calls function2, which calls function3.

Then, function3 returns, then function2 returns, then function1 returns, then
main returns.

This is a LIFO pattern!

main() {
 function1();
 return;
}

function1() {
 function2();
 return;
}

function2() {
 function3();
 return;
}

main

function1

main

function2

function1

main

function3

function2

function1

main

function2

function1

main

function1

main main

Stacks
What are some downsides to using a stack?

• No random access. You get the top, or nothing.
• No walking through the stack at all — you can only reach an element by popping

all the elements higher up off first
• No searching through a stack.

• Useful for lots of problems -- many real-world problems can be solved with a Last-
In-First-Out model (we'll see one in a minute)

• Very easy to build one from an array such that access is guaranteed to be fast.
• Where would you have the top of the stack if you built one using a Vector? Why

would that be fast?

What are some benefits to using a stack?

Simple Stack Example
The following is a simple example of a program that uses a Stack. It simply creates a
stack, pushes words onto the stack, then pops off the words and prints them.

// Simple Stack Example

#include <iostream>
#include "console.h"
#include "stack.h"

using namespace std;
const char SPACE = ' ';

int main() {
 string sentence = "hope is what defines humanity";
 string word;
 Stack<string> wordStack;

 cout << "Original sentence: " << sentence << endl;

 for (char c : sentence) {
 if (c == SPACE and word != "") {
 wordStack.push(word);
 word = ""; // reset
 }
 else {
 word += c;
 }
 }
 if (word != "") {
 wordStack.push(word);
 }

 cout << " New sentence: ";
 while (!wordStack.isEmpty()) {
 string word = wordStack.pop();
 cout << word << SPACE;
 }
 cout << endl;

 return 0;
}

Output:
Original sentence: hope is what defines humanity
 New sentence: humanity defines what is hope

More Advanced Stack Example
When you were first learning algebraic expressions,
your teacher probably gave you a problem like this,
and said, "What is the result?"

5 * 4 - 8 / 2 + 9

The class got all sorts of different answers, because no one
knew the order of operations yet (the correct answer is 25, by
the way). Parenthesis become necessary as well
(e.g., 10 / (8-3)).

As it turns out, there is a "better" way! We can use a system of arithmetic called
"postfix" notation — the expression above would become the following:

This is a somewhat annoying problem — it would be nice if there were a better way to
do arithmetic so we didn't have to worry about order of operations and parenthesis.

5 4 * 8 2 / - 9 + Wat?

Postfix Example

Postfix notation* works like this: Operands (the numbers) come first, followed by an
operator (+, -, *, /, etc.). When an operator is read in, it uses the previous operands to
perform the calculation, depending on how many are needed (most of the time it is two).

So, to multiply 5 and 4 in postfix, the postfix is 5 4 * To divide 8 by 2, it is 8 2 /

There is a simple and clever method using a stack to perform arithmetic on a postfix
expression: (talk to your neighbor about how you might do this!)

5 4 * 8 2 / - 9 +

*Postfix notation is also called "Reverse Polish Notation" (RPN) because in the 1920s a Polish logician named Jan
Łukasiewicz invented "prefix" notation, and postfix is the opposite of postfix, and therefore so-called "Reverse Polish Notation"

Read the input and push numbers onto a stack until you reach an operator.
When you see an operator, apply the operator to the two numbers that are popped from the stack.
Push the resulting value back onto the stack.
When the input is complete, the value left on the stack is the result.

Postfix Example Code

// Postfix arithmetic, implementing +, -, *, /

#include <iostream>
#include "console.h"
#include "simpio.h"
#include "stack.h"

using namespace std;

const string OPERATORS = "+-*x/";
const string SEPARATOR = " ";

// function prototypes
double parsePostfix(string expression);
string getNextToken(string &expression);
void performCalculation(Stack<double> &s, char op);

Top of program:

Postfix Example Code

// Postfix arithmetic, implementing +, -, *, /

#include <iostream>
#include "console.h"
#include "simpio.h"
#include "stack.h"

using namespace std;

const string OPERATORS = "+-*x/";
const string SEPARATOR = " ";

// function prototypes
double parsePostfix(string expression);
string getNextToken(string &expression);
void performCalculation(Stack<double> &s, char op);

Top of program:

Uses a stack

Allows * or x for
multiplication

Three functions

Postfix Example Code
main():

int main() {
 string expression;
 double answer;
 do {
 expression = getLine("Please enter a postfix expression (blank to quit): ");
 answer = parsePostfix(expression);
 cout << "The answer is: " << answer << endl << endl;
 } while (expression != "");
 return 0;
}

Postfix Example Code

int main() {
 string expression;
 double answer;
 do {
 expression = getLine("Please enter a postfix expression (blank to quit): ");
 answer = parsePostfix(expression);
 cout << "The answer is: " << answer << endl << endl;
 } while (expression != "");
 return 0;
}

main():

do / while to continue until user quits

Postfix Example Code

string getNextToken(string &expression) {
 // pull out the substring up to the first space
 // and return the token, removing it from the expression

 string token;
 int sepLoc = expression.find(SEPARATOR);
 if (sepLoc != (int) string::npos) {
 token = expression.substr(0,sepLoc);
 expression = expression.substr(sepLoc+1,expression.size()-sepLoc);
 return token;
 }
 else {
 token = expression;
 expression = "";
 return token;
 }
}

getNextToken():

Postfix Example Code

string getNextToken(string &expression) {
 // pull out the substring up to the first space
 // and return the token, removing it from the expression

 string token;
 int sepLoc = expression.find(SEPARATOR);
 if (sepLoc != (int) string::npos) {
 token = expression.substr(0,sepLoc);
 expression = expression.substr(sepLoc+1,expression.size()-sepLoc);
 return token;
 }
 else {
 token = expression;
 expression = "";
 return token;
 }
}

getNextToken():

string functions!

Postfix Example Code

double parsePostfix(string expression) {
 Stack<double> s;
 string nextToken;

 while (expression != "") {
 // gets the next token and removes it from expression
 nextToken = getNextToken(expression);
 if (OPERATORS.find(nextToken) == string::npos) {
 // we have a number
 double operand = stringToDouble(nextToken);
 s.push(operand);
 }
 else {
 // we have an operator
 char op = stringToChar(nextToken);
 performCalculation(s,op);
 }
 }
 return s.pop();
}

parsePostfix():

Postfix Example Code

double parsePostfix(string expression) {
 Stack<double> s;
 string nextToken;

 while (expression != "") {
 // gets the next token and removes it from expression
 nextToken = getNextToken(expression);
 if (OPERATORS.find(nextToken) == string::npos) {
 // we have a number
 double operand = stringToDouble(nextToken);
 s.push(operand);
 }
 else {
 // we have an operator
 char op = stringToChar(nextToken);
 performCalculation(s,op);
 }
 }
 return s.pop();
}

parsePostfix():

push when you get a number

calculate when you get an operator

Postfix Example Code

void performCalculation(Stack<double> &s, char op) {
 double result;
 double operand2 = s.pop(); // LIFO!
 double operand1 = s.pop();
 switch(op) {
 case '+': result = operand1 + operand2;
 break;
 case '-': result = operand1 - operand2;
 break;
 // allow "*" or "x" for times
 case '*':
 case 'x': result = operand1 * operand2;
 break;
 case '/': result = operand1 / operand2;
 break;
 }
 s.push(result);
}

performCalculation():

Postfix Example Code

void performCalculation(Stack<double> &s, char op) {
 double result;
 double operand2 = s.pop(); // LIFO!
 double operand1 = s.pop();
 switch(op) {
 case '+': result = operand1 + operand2;
 break;
 case '-': result = operand1 - operand2;
 break;
 // allow "*" or "x" for times
 case '*':
 case 'x': result = operand1 * operand2;
 break;
 case '/': result = operand1 / operand2;
 break;
 }
 s.push(result);
}

performCalculation():

remember LIFO behavior (subtraction
and division are not commutative)

the result simply gets
pushed back on the stack

Postfix Example Output

World's First Programmable Desktop Computer
The HP 9100A Desktop Calculator: the world’s first programmable scientific
desktop computer — really, the first desktop computer
		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (Wired, Dec. 2000)

• RPN (postfix)
• Special algorithm for trigonometric

and logarithmic functions
• Cost $5000 in 1968

($35,000 today)

Next...

Queues
The next ADT we are going to talk about is a "queue." A queue is similar to a stack,
except that (much like a real queue/line), it follows a "First-In-First-Out" (FIFO) model:

The first person
in line

is the first
person served

The last person
in line

is the last
person served Insertion into a queue "enqueue()" is done at the back of the queue, and

removal from a queue "dequeue()" is done at the front of the queue.

Queues
Like the stack, the queue Abstract Data Type can be implemented in many ways (we will talk about
some later!). A queue must implement at least the following functions:

enqueue(value) (or add(value)) - place an entity onto the back of the queue
dequeue() (or remove()) - remove an entity from the front of the queue
front() (or peek()) - look at the entity at the front of the queue, but don’t remove it
isEmpty() - a boolean value, true if the queue is empty, false if it has at least one element.
(note: a runtime error occurs if a dequeue() or front() operation is attempted on an empty
queue.)

Please look at the Stanford Library Queue reference for other functions (e.g., there is a back()
function that is analogous to front() for the back of the queue -- but no removing the value!)

Queue<int> q; // {}, empty queue
q.enqueue(42); // {42}
q.enqueue(-3); // {42, -3}
q.enqueue(17); // {42, -3, 17}
cout << q.dequeue() << endl; // 42 (q is {-3, 17})
cout << q.front() << endl; // -3 (q is {-3, 17})
cout << q.dequeue() << endl; // -3 (q is {17})

Queue Examples
There are many real world problems that are modeled well with a queue:

Jobs submitted to a printer go into a queue (although they can be deleted, so it breaks the model a bit)
Ticket counters, supermarkets, etc.
File server - files are doled out on a first-come-first served basis
Call centers (“your call will be handled by the next available agent”)
The LaIR is a queue!
Chris G’s research! Scheduling work between a CPU and a GPU is queue based.

The Scheduling Algorithm
Applications are moved from a main queue into a device sub-queue
based on a set of rules (assuming one CPU and one GPU):

Ac
tu

al
 s

lid
e

fr
om

 C
hr

is
’s

D
is

se
rt

at
io

n
D

ef
en

se

Queue Mystery
Both the Stanford Stack and Queue classes have a size() function that returns the number of
elements in the object.

What is the output of the following code?

 Queue<int> queue;
 // produce: {1, 2, 3, 4, 5, 6}
 for (int i = 1; i <= 6; i++) {
 queue.enqueue(i);
 }
 for (int i = 0; i < queue.size(); i++) {
 cout << queue.dequeue() << " ";
 }
 cout << queue.toString() << " size " << queue.size() << endl;

A. 1 2 3 4 5 6 {} size 0
B. 1 2 3 {4,5,6} size 3
C. 1 2 3 4 5 6 {1,2,3,4,5,6} size 6
D. none of the above

Both the Stanford Stack and Queue classes have a size() function that returns the number of
elements in the object. But, you must be careful using it!

What is the output of the following code?

 Queue<int> queue;
 // produce: {1, 2, 3, 4, 5, 6}
 for (int i = 1; i <= 6; i++) {
 queue.enqueue(i);
 }
 for (int i = 0; i < queue.size(); i++) {
 cout << queue.dequeue() << " ";
 }
 cout << queue.toString() << " size " << queue.size() << endl;

Queue Mystery

A. 1 2 3 4 5 6 {} size 0
B. 1 2 3 {4,5,6} size 3
C. 1 2 3 4 5 6 {1,2,3,4,5,6} size 6
D. none of the above

Changes during the loop! Be careful!!

Queue Idiom 1
If you are going to empty a stack or queue, a very good programming idiom is the following:

 Queue<int> queue;
 // produce: {1, 2, 3, 4, 5, 6}
 for (int i = 1; i <= 6; i++) {
 queue.enqueue(i);
 }
 while (!queue.isEmpty()) {
 cout << queue.dequeue() << " ";
 }
 cout << queue.toString() << " size " << queue.size() << endl;

A. 1 2 3 4 5 6 {} size 0
B. 1 2 3 {4,5,6} size 3
C. 1 2 3 4 5 6 {1,2,3,4,5,6} size 6
D. none of the above

Queue Idiom 2
If you are going to go through a stack or queue once for the original values, a very good
programming idiom is the following:

 int origQSize = queue.size();
 for (int i=0; i < origQSize; i++) {
 int value = queue.dequeue();
 cout << value << " ";
 // re-enqueue even values
 if (value % 2 == 0) {
 queue.enqueue(value);
 }
 }

Output:

1 2 3 4 5 6 {2, 4, 6} size 3

Queue Idiom 2
If you are going to go through a stack or queue once for the original values, a very good
programming idiom is the following:

 int origQSize = queue.size();
 for (int i=0; i < origQSize; i++) {
 int value = queue.dequeue();
 cout << value << " ";
 // re-enqueue even values
 if (value % 2 == 0) {
 queue.enqueue(value);
 }
 }

Output:

1 2 3 4 5 6 {2, 4, 6} size 3

Fix value of origQSize at the beginning

Recap
•Vectors Review:
•Stored as arrays under the hood -- you should be cognizant of the ramifications of
inserting or removing from the middle of the Vector.

•But, the Vector ADT does not require an array! We could have Moon Monkeys.

•Abstract Data Types:
•An ADT is a set of behaviors that the underlying code must produce, but how the
underlying code is written does not affect the ADT behavior (but it might affect the
speed!)

•Stacks:
•Stacks are Last-In-First-Out (LIFO) and will have push(value), pop(), top(), and
isEmpty().

•Queues:
•Queues are First-In-First-Out (FIFO) and will have enqueue(value), dequeue(), front(),
and isEmpty().

References and Advanced Reading

•References:
•Stanford Stack reference: http://stanford.edu/~stepp/cppdoc/Stack-class.html
•Stanford Queue reference: stanford.edu/~stepp/cppdoc/Queue-class.html

•Advanced Reading:
• Hewlett-Packard 9100A: http://en.wikipedia.org/wiki/Hewlett-Packard_9100A
• Reverse Polish Notation: http://en.wikipedia.org/wiki/Reverse_Polish_notation
• Standard stack library (not Stanford) reference: http://www.cplusplus.com/
reference/stack/stack/

•Standard queue library (not Stanford) reference: www.cplusplus.com/reference/
queue/queue

•Chris G's dissertation (you will be one of few people to actually read it!)
•All about memory caching: http://www.hardwaresecrets.com/how-the-cache-
memory-works/

http://stanford.edu/~stepp/cppdoc/Stack-class.html
http://stanford.edu/~stepp/cppdoc/Queue-class.html
http://en.wikipedia.org/wiki/Hewlett-Packard_9100A
http://en.wikipedia.org/wiki/Reverse_Polish_notation
http://www.cplusplus.com/reference/stack/stack/
http://www.cplusplus.com/reference/stack/stack/
http://www.cplusplus.com/reference/queue/queue
http://www.cplusplus.com/reference/queue/queue
http://libraprod.lib.virginia.edu/file_assets/libra-oa:797
http://www.hardwaresecrets.com/how-the-cache-memory-works/
http://www.hardwaresecrets.com/how-the-cache-memory-works/

Extra Slides

Stack Example
What is wrong with the following code?

int main() {
 for (int i=0; i < 10; i++) {
 if (i % 2 == 0) {
 cout << i << endl;
 }
 return 0;
}

In Qt Creator, this is what happens when you compile:

15
16
17
18
19
20
21

How does Qt Creator know that there are un-matched curly braces? A stack!

Stacks Example: Properly matched brackets
A Stack example algorithm: determine if a program has properly matched bracket
symbols — parentheses, square brackets, and curly brackets: () [] { }

Algorithm: Think about it for a few minutes -- talk to your neighbor!

•Make an empty stack.
•Start reading characters.
•If the character is an opening symbol, push it onto the stack.
•If it is a closing symbol, then if the stack is empty, report an error. Otherwise, pop
the stack.

•If the symbol popped is not the corresponding opening symbol, then report an error.
•At the end of the input, if the stack is not empty, report an error.

See code from lecture for full program.

