Week 9 Section Handout

This week’s section handout has practice with graphs and inheritance. Follow along
at CodeStepByStep: https://codestepbystep.com/problemset/view?id=72

1. Dijkstra and A*

Trace through Dijkstra’s algorithm on the
following graph to find the least cost paths
from node A to each other node in the
graph. Then use A* to find the least cost
path from A to G, where the heuristic is
defined such that the distance between
two nodes is the distance between those
two letters in the alphabet. For example,
the distance between B and D according to
this heuristic is 2.

2. Minimum Spanning Tree
For the graph below, use
Kruskal’s algorithm to find the
minimum spanning tree.

3. Polymorphism (not on CSBS)
Consider the following classes; assume that each is defined in its own file.
class Lettuce {
public:
void m1() { cout << "L 1" << endl; m2(); }
void m2() { cout << "L 2" << endl; }
s
class Bacon : public Lettuce {
public:
void m1() { Lettuce::ml(); cout << "B 1" << endl; }
void m3() { cout << "B 3" << endl; }

}s

Thanks to Marty Stepp, Chris Gregg, and other CS106B and X instructors and TAs
for contributing problems on this handout.


https://codestepbystep.com/problemset/view?id=72

class Hamburger : public Bacon {

public:
void m2() { cout << "H 2" << endl; Bacon::m2(); }
void m4() { cout << "H 4" << endl; }

}s

class Mayo : public Hamburger {

public:
void m3() { cout << "M 3" << endl; mi();}
void m4() { cout << "M 4" << endl; }

}s

Now assume that the following variables are defined:
Lettuce *varl = new Bacon();

Bacon *var2 = new Mayo();

Lettuce *var3 = new Hamburger();

Bacon *var4 = new Hamburger();

For each statement below, indicate the output produced. If the statement
does not compile, write "COMPILER ERROR". If a statement would crash at
runtime or cause unpredictable behavior, write "CRASH".

varl->m1l();
varl->m2();
varl->m3();
var2->m1();
var2->m2();
var2->m3();
var2->m4();
var3->m1();
var3->m2();
vard->m2();
var4d->m3();
vard->m4();

4. Polymorphism Mystery 8
Consider the following classes; assume that each is defined in its own file.
class Hamilton {
public:
virtual void mi() { cout << "H1 "; m2(); }



virtual void m2() { cout << "H2 "; }
¥
class Burr : public Hamilton {
public:
virtual void mi() { Hamilton::mi(); cout << "B1 "; }
virtual void m3() { cout << "B3 "; }
¥
class Eliza : public Burr {
public:
virtual void m2() { cout << "E2 "; Hamilton::m2(); }
virtual void m3() { Burr::m3(); cout << "E3 "; }
¥
class George : public Eliza {
public:
virtual void m1() { cout << "G1 "; Burr::mi(); }
virtual void m4() { cout << "G4 "; m2(); }
¥
Now assume that the following variables are defined:
Hamilton* varl = new Burr();
Hamilton* var2 = new Eliza();
Burr* var3 = new Eliza();
Eliza* vard = new George();
For each statement below, indicate the output produced. If the statement
does not compile, write "COMPILER ERROR". If a statement would crash at
runtime or cause unpredictable behavior, write "CRASH".
varl->mi();
varl->m2();
var2->ml();
var2->m2();
var2->m2();
var3->ml();
var3->m2();
var3->m3();
vard->mi();
vard->m4();
((Burr*) varl)->m3();
((Eliza*) var2)->m4();
((George*) vard)->ma4();
((George*) var4d)->m3();
((George*) var2)->ma4();




