
Boggle YEAH Hours
Brahm Capoor

(Some slides adapted from Spring 2017 YEAH slides)

Road Map

Lecture review

Road Map

Lecture review

Assignment overview

Road Map

Lecture review

Assignment overview

Q&A!

Recursive Backtracking

Choose. Explore. Unchoose. Repeat.

Recursion vs backtracking

bool subseq(string &s1, string &s2) {
if (s2 == “”) return true;
if (s1 == “”) return false;
if (s1[0] == s2[0]){

string r1 = s1.substr(1);
string r2 = s2.substr(1);
return subseq(r1, r2);

} else {
string r1 = s1.substr(1);
return subseq(r1, s2);

}
}

Recursion vs backtracking

bool subseq(string &s1, string &s2) {
if (s2 == “”) return true;
if (s1 == “”) return false;
if (s1[0] == s2[0]){

string r1 = s1.substr(1);
string r2 = s2.substr(1);
return subseq(r1, r2);

} else {
string r1 = s1.substr(1);
return subseq(r1, s2);

}
}

● In recursion, you only ever do one
recursive call at every level of
the recursion

● In recursion, you know that your
recursive call will work (it’s the
leap of faith!)

Recursion vs backtracking

string LCS(string &s1, string &s2) {
if (s1 == “” || s2 == “”) return “”;
if (s1[0] == s2[0]){

string r2 = s2.substr(1);
string r2 = s2.substr(1);
return s1[0] + LCS(r1, r2);

} else {
string r1 = s1.substr(1);
string r2 = s2.substr(1);
string p1 = LCS(s1, r2);
string p2 = LCS(r1, s2);
if (p1.length() > p2.length()) {

return p1;
} else {

return p2;
}

}
}

bool subseq(string &s1, string &s2) {
if (s2 == “”) return true;
if (s1 == “”) return false;
if (s1[0] == s2[0]){

string r1 = s1.substr(1);
string r2 = s2.substr(1);
return subseq(r1, r2);

} else {
string r1 = s1.substr(1);
return subseq(r1, s2);

}
}

Recursion vs backtracking

string LCS(string &s1, string &s2) {
if (s1 == “” || s2 == “”) return “”;
if (s1[0] == s2[0]){

string r2 = s2.substr(1);
string r2 = s2.substr(1);
return s1[0] + LCS(r1, r2);

} else {
string r1 = s1.substr(1);
string r2 = s2.substr(1);
string p1 = LCS(s1, r2);
string p2 = LCS(r1, s2);
if (p1.length() > p2.length()) {

return p1;
} else {

return p2;
}

}
}

bool subseq(string &s1, string &s2) {
if (s2 == “”) return true;
if (s1 == “”) return false;
if (s1[0] == s2[0]){

string r1 = s1.substr(1);
string r2 = s2.substr(1);
return subseq(r1, r2);

} else {
string r1 = s1.substr(1);
return subseq(r1, s2);

}
}

Recursion vs backtracking

string LCS(string &s1, string &s2) {
if (s1 == “” || s2 == “”) return “”;
if (s1[0] == s2[0]){

string r2 = s2.substr(1);
string r2 = s2.substr(1);
return s1[0] + LCS(r1, r2);

} else {
string r1 = s1.substr(1);
string r2 = s2.substr(1);
string p1 = LCS(s1, r2);
string p2 = LCS(r1, s2);
if (p1.length() > p2.length()) {

return p1;
} else {

return p2;
}

}
}

● Multiple recursive calls at every
level of the function call

● Backtracking is about finding and
weighing your options

Types of recursion & backtracking

Determine whether a solution exists

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Count the number of solutions

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Count the number of solutions

Print/find all the solutions

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Count the number of solutions

Print/find all the solutions
See midterm review slides for more detail!

Classes

// Person.cpp

Person::Person(string name) {
this->name = name;

}

Person::string getName(){
return this->name;

}

// Person.h

class Person {
public:

// constructor(s)
Person(string name)
/*
 * Write sick (and public)

 * code prototypes here
 */

private:
string name;
/*
 * Write sick (and secret)
 * code prototypes here

 * /
}

Interface Source

// Person.cpp

Person::Person(string name) {
this->name = name;

}

Person::string getName(){
return this->name;

}

// Person.h

class Person {
public:

// constructor(s)
Person(string name)
/*
 * Write sick (and public)

 * code prototypes here
 */

private:
string name;
/*
 * Write sick (and secret)
 * code prototypes here

 * /
}

Interface Source

Person me = Person(“Brahm”);

cout << me.getName() << endl; //“Brahm”

Another file, far far away (or not)

Boggle!
Logistics:
● Due May 10
● Pair programming allowed!

○ Partner needs to be in the
same section

The Rules

Starter code structure

�,$$)"-)�6ǣ --

“Client to perform console UI and work with your
Boggle class to play a game”

“...not meant to be the place to store the majority of
the game’s state, logic or algorithms...”

“...no recursion or backtracking should take place in
boggleplay…”

�,$$)"ǣ%�ǎ��,$$)"ǣ --

“files for a Boggle class representing the state of
the current Boggle game”

“the majority of your code”

“...required members…”

Starter code structure

�,$$)"-)�6ǣ --

“Client to perform console UI and work with your
Boggle class to play a game”

“...not meant to be the place to store the majority of
the game’s state, logic or algorithms...”

“...no recursion or backtracking should take place in
boggleplay…”

�,$$)"ǣ%�ǎ��,$$)"ǣ --

“files for a Boggle class representing the state of
the current Boggle game”

“the majority of your code”

“...required members…”

Also bogglegui.h, but worry about this last!

Game Setup

● Drawing the board
○ Custom board
○ Shaking the cubes

■ Representing the cubes
■ Representing the board
■ Random locations and faces

#include “shuffle.h”

shuffle(array, length);

#include random.h

randomInteger(0,6);

#include <<cctype>

isalpha(ch);

#include “simpio.h”

getYesOrNo(prompt, reprompt);

Get a word from the user...
Make sure to error check!

Human Word Search

● Find where the word you’re searching for can start
● Recursively explore from this point

○ Is the public method enough, or do you need a helper function?

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Count the number of solutions

Print/find all the solutions

Human Word Search

● Find where the word you’re searching for can start
● Recursively explore from this point

○ Is the public method enough, or do you need a helper function?
● An example (courtesy of previous YEAH hours)

humanWordSearch Demo

word = “smart”

A T R E

S N A R

U M B D

D A N E

humanWordSearch Demo

word = “smart”

A T R E

S N A R

U M B D

D A N E

humanWordSearch Demo

word = “smart”

A T R E

S N A R

U M B D

D A N E

humanWordSearch Demo

word = “smart”

A T R E

S N A R

U M B D

D A N E

humanWordSearch Demo

word = “smart”

A T R E

S N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Explore the rest of

the word

humanWordSearch Demo

word = “mart”

A T R E

S N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “mart”

A T R E
Marked

As
Used

N A R

U M B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

• Found it,
now do it
again.

humanWordSearch Demo

word = “art”

A T R E
Marked

As
Used

N A R

U
Marked

As
Used

B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
second letter.

humanWordSearch Demo

word = “art”

A T R E
Marked

As
Used

N A R

U
Marked

As
Used

B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
next letter.

humanWordSearch Demo

word = “art”

A T R E
Marked

As
Used

N A R

U
Marked

As
Used

B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
next letter.

• Found the
next letter!
Let’s do it
again.

humanWordSearch Demo

word = “rt”

A T R E
Marked

As
Used

N
Marked

As
Used

R

U
Marked

As
Used

B D

D A N E

• We found the first letter
• Mark it as used

• Why?
• Highlight square
• Look at its

neighbors for the
next letter.

humanWordSearch Demo

…a few steps later

A T R E

S N A R

U M B D

D A N E

• How do we know when
we are here?

• That’s our base case

• What if that
first “S” did
not work out?

• Keep looking

The user ends their turn...
(by pressing enter)

Computer Word Search

● Find all the words on the board
● Also backtracking

Types of recursion & backtracking

Determine whether a solution exists

Find a solution

Find the best solution

Count the number of solutions

Print/find all the solutions

Computer Word Search

● Find all the words on the board
● Also backtracking
● When do you stop?

○ It can’t be when you find a word
○ Once you’ve found “ban”, you can still find “banter”

lexicon.containsPrefix(pre);

// pre is a possible string prefix

Computer Word Search

● Find all the words on the board
● Also backtracking
● When do you stop?

○ It can’t be when you find a word
○ Once you’ve found “ban”, you can still find “banter”

● An example (courtesy of previous YEAH hours)

lexicon.containsPrefix(pre);

// pre is a possible string prefix

computerWordSearch() Demo

word so far: “E”

E A Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

computerWordSearch() Demo

word so far: “EA”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down. Marked

As Used A Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAQ”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

BUT WAIT! EAQ
is not the start
of any english
word! So should we
continue??

A K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EA”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used A Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAS”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EASR”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

But wait, no
word begins
with EASR!

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

Marked
As Used R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAS”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EASU”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

But wait, no
word begins
with “EASU”!

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

Marked
As Used R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAS”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EASV”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

STOP! No
words start
with “EASV”!

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

Marked
As Used R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAS”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

We have looked
at all of S’s
neighbors, so
we will head
back up.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EA”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used A Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EAR”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

“EAR” is a word, but it is
not 4 letters.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EARS”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

“EARS”! Hey, that’s a word
and it’s 4 letters at least.

Let’s add it to
our set, and
keep looking!

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S Marked
As Used A R

U V K H

M E J O

computerWordSearch() Demo

word so far: “EARSU”

A K Q E

S R A R

U V K H

M E J O

Select each neighbor in turn
and recurse down.

Marked
As Used K Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S R A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

S Marked
As Used A R

U V K H

M E J O

Marked
As Used

Marked
As Used Q E

Marked
As Used

Marked
As Used A R

U V K H

M E J O

Time for the GUI!
Figure out what each function in bogglegui.h does and how/when to use it.

BoggleGUI::initialize(row, col) if you want to call initialize(row, col)

endl;
//questions?

