
Chris Gregg Section #2
CS106B April 16, 2018

Section Handout #2: Sets, Maps and Recursion
Based on handouts by various current and past CS106B/X instructors and TAs.

Sets	
1.	Twice	
Write a function named twice that takes a reference to a Vector of integers and returns a set
containing all the numbers in the vector that appear exactly twice. Bonus: solve this problem
using only Sets as auxiliary data structures!
Example: passing {1, 3, 1, 4, 3, 7, -2, 0, 7, -2, -2, 1} returns {3, 7}.

2. UnionSets
Write a function named unionSets that takes a reference to a Set of Sets of ints and returns the
union of all of the sets of ints. (A union is the combination of everything in each set.) For example,
if a Set variable named sets stores the set of integers {{1, 3}, {2, 3, 4, 5}, {3, 5, 6,
7}}, the call of unionSets(sets) should return {1, 2, 3, 4, 5, 6, 7}.

Maps
1. Rarest
Write a function named rarest that accepts a reference to a Map from strings to strings as a
parameter and returns the value that occurs least frequently in the map. If there is a tie, return the
value that comes earlier in ABC order. For example, if a variable called map contains the following
elements:

{"Alyssa":"Harding", "Char":"Smith", "Dan":"Smith",
"Jeff":"Jones", "Kasey":"Jones", "Kim":"Smith",

"Morgan":"Jones", "Ryan":"Smith", "Stef":"Harding"}

Then a call of rarest(map) would return "Harding" because that value occurs 2 times, fewer
than any other. Note that we are examining the values in the map, not the keys. You may assume
the map passed is not empty.

2. FriendList
Write a function named friendList that takes in a file name, reads friend relationships from a
file, and writes them to a Map (from friend A to friend B) that it then returns. Friendships are bi-
directional; if Chris is friends with Nick, Nick is friends with Chris. The file contains one friend
relationship per line, with names separated by a single space. You do not have to worry about
malformed entries. If an input file named buddies.txt looked like this:

Nick Chris

Chris Mehran

 -2-

Then the call of friendList(“buddies.txt”) should return a resulting map that looks like this:
{"Chris":{"Nick","Mehran"}, "Nick":{"Chris"}, "Mehran":{"Chris"}}

3. Reverse Map
Write a function named reverseMap that accepts a reference to a map from ints to strings, and
returns a map with the associations reversed. For example, if a Map variable named map stores
{1:"a", 2:"b", 3:"c"}, the call of reverseMap(map) should return {"a":1, "b":2, "c":3}.
If there are any duplicate values (k1, v) and (k2, v) in the original map, your returned map
may contain either (v, k1) or (v, k2).

Recursion
1. Mystery Trace
For each call to the following method, indicate what output is printed.

void mystery1(int x, int y) {

 if (y == 1) {
 cout << x;
 } else {
 cout << (x * y) << ", ";
 mystery1(x, y - 1);
 cout << ", " << (x * y);
 }

}

Call: Output:
mystery1(4, 1) _________________________________
mystery1(8, 2) _________________________________
mystery1(3, 4) _________________________________

2. Sum of Squares
Write a recursive function named sumOfSquares that takes in an integer n and returns the sum of
squares from 1 to n inclusive. For example, sumOfSquares(3) should return 14 (1" +	2" +	3" =
14). You can assume n ≥ 1.

3. Reverse String
Write a recursive function reverse that takes in a string s and returns a string with the same
characters in reverse order. For example, reverseString("Hi, you!") returns "!uoy ,iH". You
shouldn't modify the original string.

 -3-

4. Star String
Write a recursive function named starString that takes in an integer n and returns a string of 2'
asterisks. For example,

starString(1) "**"
starString(2) "****"
starString(4) "****************" // 16 stars

How many recursive calls does your function end up making (as a function of n)?

5. Is Subsequence
Write a recursive function named isSubsequence that takes two strings and returns true if the
second string is a subsequence of the first string, or false otherwise. A string is a subsequence of
another if it contains the same letters in the same order, but not necessarily consecutively. You can
assume both strings are all lowercase characters. For example,

isSubsequence("computer", "core") false
isSubsequence("computer", "cope") true
isSubsequence("computer", "computer") true

6. Double Stack
Write a recursive function named doubleStack that takes a reference to a stack of ints and replaces
each integer with two copies of that integer. For example, if s stores {1, 2, 3}, then
doubleStack(s); changes it to {1, 1, 2, 2, 3, 3}.

7. Zig Zag
Write a recursive function named zigzag that prints n characters as follows. The middle character
(or middle two characters if n is even) is an asterisk (*). All characters before the asterisks are '<'.
All characters after are '>'. You can assume that n is positive. (You do not need to worry about
printing an endl at the end.)

zigzag(1) *
zigzag(4) <**>
zigzag(9) <<<<*>>>>

8. Directory Crawl
Write a function crawl that accepts a filename as a parameter, as well as the initial indentation of
the output (as a string) and prints information about that file. If the name represents a normal file,
just print its name. If the name represents a directory, print its name and information about every
file/directory inside it, indented further by 4 spaces. For example, the following could be output
printed for the call crawl(“user/documents/course”, “”):

course

 -4-

 handouts
 syllabus.doc
 lecture-schedule.xls
 homework
 1-gameoflife
 life.cpp
 life.h
 GameOfLife.pro

Note that this problem fits well with recursion, since file systems are recursive! (a directory can
itself contain other directories). Also note that you should only print out the “tail” of the path at
each step – for instance, for “user/documents/course” you should first print out “course”, and
then print out everything inside of that folder. There are some filesystem methods that may come
in handy:

bool isDirectory(string filename) Returns whether this file name represents

a directory.
void listDirectory(string path,
Vector<string> &list)

Adds an alphabetized list of the files in
the specified directory to the string vector
list.

getTail(string filename) Returns the last component of a path
name. The components of the path name
can be separated by any of the directory
path separators (forward or reverse
slashes). For instance,
getTail(“cs/106b/section2”)
returns section2, which is the last
filepath component.

