Recursion Overview

• In order to solve a problem, solve a smaller version of the same problem
 • In order to solve that problem, solve a smaller version of the same problem
 • In order to solve that problem, solve a smaller version of the same problem
 • In order to solve that problem, solve a smaller version of the same problem
 • In order to solve that problem, solve a smaller version of the same problem
 •

• “A function calling itself”
Recursion Overview

• Solving smaller versions of the same problem (recursive case) until we reach a version that is so simple, you can just do it (base case).

• **Factorials:** \(n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \)

 - \(n! \) is just \(n \times (n-1)! \)
 - \((n-1)! \) is just \((n-1) \times (n-2)! \)
 - \((n-2)! \) is just \((n-2) \times (n-3)! \)

 \(1! \) is just \(1 \)
This week’s section handout, Recursion #2:

Write a recursive function named `sumOfSquares` that takes in an integer \(n \) and returns the sum of squares from 1 to \(n \), inclusive.

For example, `sumOfSquares(3)` should return 14 (\(1^2 + 2^2 + 3^2 = 14\)). You can assume \(n \geq 1 \).
Recursion Practice

Base case?

What is the simplest n for which we can find the `sumOfSquares`?

ANS: $n = 1$

(Remember, we were allowed to assume that $n \geq 1$)

```
sumOfSquares(1) = 1^2 = 1
```
Recursion Practice

Recursive case?
Given integer k, what’s the input that’s just one step smaller?

\[
\text{ANS: } n = k - 1
\]

If we have $\text{sumOfSquares}(k-1)$, how do we get $\text{sumOfSquares}(k)$?

\[
\text{ANS: } \text{sumOfSquares}(k) = k^2 + \text{sumOfSquares}(k-1)
\]
Recursion Practice

Solution:

```c
int sumOfSquares(int n) {
    if(n == 1) {
        return 1;
    } else {
        return n*n + sumOfSquares(n-1);
    }
}
```
Part A. Fractals
What is a Fractal?

• A figure that displays **self-similarity** on all scales
What is a Fractal?

- Fractals are naturally recursive objects

1 big one = 3 smaller ones
Sierpinski Triangle

(See video for animation)
void drawSierpinskiTriangle(Gwindow &gw, double x, double y, double size, int order)
Drawing equilateral triangles

```java
void drawLine(double x1, double y1,
              double x2, double y2)
```

Usage → `gw.drawLine(20, 20, 40, 40);`

Use trig to find h!

![Diagram of equilateral triangle with vertices labeled (x1,y1), (x2,y2), and (x3,y3).](image)
Sierpinski Triangle

Approach

• Must write recursively
 • No loops, no data structures allowed
 • What’s a good base case? What’s the recursive case?

• Hint: to draw the Order n triangle, you need to draw three smaller Order $n - 1$ triangles.
Sierpinski Triangle

To draw an Order n Triangle here...

...you should draw Order $n-1$ Triangles in these places!
Sierpinski Triangle – tips

• All triangles you draw should **point downwards**
 • If you’re drawing any upward-pointing triangles, double check your approach!
 • Each line in the final drawing should only be traced **once** – don’t redraw any lines!

• Don’t forget edge cases and exceptions!
 • Order 0 triangle?
 • Negative values for x, y, size, or order?
Mandelbrot Set
Complex Numbers

Complex numbers are of the form

\[a + bi \]

where \(i \) is the imaginary number \(\sqrt{-1} \)

Complex numbers can be graphed in the complex plane.
Complex Numbers

Real part \(a + bi \) Imaginary part

- **Addition**
 \[(a_1 + b_1i) + (a_2 + b_2i)\]
 \[= (a_1 + a_2) + (b_1 + b_2)i\]

- **Multiplication**
 \[(a_1 + b_1i)(a_2 + b_2i)\]
 \[= a_1a_2 + (a_1b_2 + a_2b_1)i - b_1b_2\]

- **Absolute value**
 \[|(a + bi)|\]
 \[= \sqrt{a^2 + b^2}\]

 - Add real and imaginary parts separately
 - FOIL
 - Distance from origin of complex plane
Complex Numbers

- We provide a **Complex** class to help you work with complex numbers

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex(double a, double b)</td>
<td>Constructor to create a complex number (a + bi)</td>
</tr>
<tr>
<td>c.abs()</td>
<td>Returns absolute value of (c)</td>
</tr>
<tr>
<td>c.realPart()</td>
<td>Returns real part of (c)</td>
</tr>
<tr>
<td>c.imagPart()</td>
<td>Returns coefficient of imaginary part of (c)</td>
</tr>
<tr>
<td>c1 + c2</td>
<td>Returns sum of (c_1) and (c_2)</td>
</tr>
<tr>
<td>c1 * c2</td>
<td>Returns product of (c_1) and (c_2)</td>
</tr>
</tbody>
</table>
Mandelbrot Set – what is it?

The set of all complex numbers \(c \) that satisfy the following property:

• The function \(f(z) = z^2 + c \) does not diverge when iterated from \(z = 0 \).

• i.e. the sequence \(f(0), f(f(0)), f(f(f(0))), \ldots \) does not diverge to infinity.

When you plot all the values in the Mandelbrot set, it looks like this →

(black = in the set)
Mandelbrot Set – Recursion!

We can use the following recursive definition for the Mandelbrot Set to figure out what numbers are in it:

\[z_{n+1} = z_n^2 + c \]
\[z_0 = 0, n \to \infty \]

- \(z_0 = 0 \)
- \(z_1 = z_0^2 + c = 0^2 + c = c \)
- \(z_2 = z_1^2 + c = c^2 + c \)
- \(z_3 = z_2^2 + c = (c^2 + c)^2 + c \)
- Etc.
Mandelbrot Set – Recursion!

We can use the following recursive definition for the Mandelbrot Set to figure out what numbers are in it:

\[z_{n+1} = z_n^2 + c \]
\[z_0 = 0, \quad n \to \infty \]

- If \(|z_n| \) does not diverge after infinitely many iterations (or for our purposes, some large number like 200), then \(c \) is in the set.
- If \(|z_n| \) does diverge at some point (for our purposes, if it exceeds 4), then \(c \) is not in the set.
Mandelbrot Set – Prototypes

```c
void mandelbrotSet(Gwindow &gw, double minX, double incX, double minY, double incY, int maxIterations, int color)

int mandelbrotSetIterations(Complex c, int maxIterations)

int mandelbrotSetIterations(Complex z, Complex c, int remainingIterations)
```
Mandelbrot Set – overall function

void mandelbrotSet(Gwindow &gw, double minX, double incX, double minY, double incY, int maxIterations, int color)

• **minX and minY** – the complex number at the upper left of your grid (dictates your “window”)
 - Complex startingCoord = Complex(minX, minY);

• **incX and incY** – the increment you should move as you go from square to square in your grid (“resolution”)
 - (row = 3, col = 5) = (minX + 3 * incX, minY + 5 * incY)

• **maxIterations** – the number of iterations you should try before determining that a number does not diverge
Mandelbrot Set – helpers

```c
int mandelbrotSetIterations(Complex c, int maxIterations)

int mandelbrotSetIterations(Complex z, Complex c, int remainingIterations)
```

- Compute the number of iterations needed to determine if a particular number c diverges
- Same name, different parameters ("overloaded")
- First = wrapper function
 - Returns how many iterations were needed for number c
- Second = recursive helper function
 - Implements the recursive definition for the Mandelbrot Set
 - Remember: z starts at 0!
void mandelbrotSet(Gwindow &gw, double minX, double incX, double minY, double incY, int maxIters, int color) {
 //for each pixel
 Complex c = Complex(pixelX, pixelY);
 numIters = mandelbrotSetIterations(c, maxIters);
 //color pixel
}

int mandelbrotSetIterations(Complex c, int maxIterations) {
 //call mandelbrotSetIterations
}
Mandelbrot Set – coloring

```c
void mandelbrotSet(Gwindow &gw, double minX, double incX, double minY, double incY, int maxIterations, int color)
```

- **color** – determines the color of your graph
 - **color != 0** – set the pixel’s color to color if that pixel represents a number in the set
 - ```c
 pixels[r][c] = color;
  ```
void mandelbrotSet(Gwindow &gw, double minX, double incX, double minY, double incY, int maxIterations, int color)

- color – determines the color of your graph
  - color == 0 – set the pixel’s color based on what mandelbrotSetIterations returned

```cpp
pixels[r][c] = palette[numIterations % palette.size()];
```
What is a Grammar?

• A **formal language** is a set of words/symbols plus a set of rules that dictate how those symbols can be put together

• A **grammar** describes the rules for a particular formal language

**Symbols:**
S, NP, AdjP, V’, green, etc.

**Rules:**
S → NP + VP
NP → N’
N’ → AdjP + N’
What is a Grammar?

• A grammar could reflect how we understand grammar in the English language (or any other spoken language), but it doesn’t have to.
  • You can make a language out of arbitrary symbols and a grammar out of arbitrary relationships between those symbols!

You could have $S \rightarrow NP + VP$
(Sentence $\rightarrow$ Noun Phrase + Verb Phrase)

You could also have $\diamondsuit \rightarrow \blacksquare + \&$
Backus-Naur Form (BNF)

• A way of formatting the rules of a grammar

  non-terminal1::=rule|rule|rule|...
  non-terminal2::=rule|rule|rule|...

• **non-terminal**: a symbol that gets expanded into other symbols (think of this as a part of speech)
  • **terminal**: a symbol that does not expand (i.e. it terminates) (think of this as a word)

• **rule**: a sequence of symbols that a non-terminal can expand to. Different possible rules are separated by “|”
BNF – an example

- Start with $<S>$
- Follow its rule: $<S> \rightarrow <NP><VP>$
  - Take $<NP>$, choose a rule: $<NP> \rightarrow <AdjP><NP>$
    - Take $<AdjP>$, choose a rule: $<AdjP> \rightarrow \text{sleepy}$
    - Take $<NP>$, choose a rule: $<NP> \rightarrow \text{cat}$
  - Take $<VP>$, choose a rule: $<VP> \rightarrow \text{barks}$
- Final sentence: sleepy cat barks

All non-terminals in this example are surrounded by $<>$. But it does NOT have to be this way in all grammars!
Grammar Solver

```cpp
Vector<string> grammarGenerate(istream &input,
 string symbol, int times)
```

- **input** – an input stream containing a grammar in Backus-Naur Form
- **symbol** – a starting symbol for each sentence to be generated
- **times** – the number of sentences to generate
Grammar Solver

Vector<string> grammarGenerate(istream &input,
string symbol, int times)

1. Read the input file and store the grammar into some data structure
2. Randomly generate sentences (starting with the given symbol) from the grammar
   • Must be done recursively!
3. Return a vector of the sentences generated
1. Reading the Input File

- Read each line of the file and store grammar in a **Map** (no recursion needed):

  \[
  \text{non-terminal1::=} \text{rule|rule|rule|...}
  \]

**Helpful functions from strlib.h:**
- `Vector<string> stringSplit(string s, string delimiter)`
- `void trim(String s)`
2. Generating sentences

- **Recursively** generate random expressions given a starting symbol $S$.

1. If $S$ is a terminal, then that’s it! The resulting expression is just $S$ itself.
2. If $S$ is a non-terminal, randomly select one of its rules $R$.
3. For each symbol in $R$, generate a random expression.
2. Generating sentences

<s> ::= <np> <vp>
<np> ::= <dp> <adjp> <n> | <pn>
<dp> ::= the a
<adjp> ::= <adj> | <adj> <adjp>
<adj> ::= big | fat | green | wonderful | fast
<n> ::= dog | cat | man | university | father
<pn> ::= John | Jane | Sally | Spot | Fred | El
<vp> ::= <tv> <np> | <iv>
<tv> ::= hit | honored | kissed | helped
<iv> ::= died | collapsed | laughed | wept
Questions?
Extension: Fractal Tree
Fractal Tree

• Draw a tree as shown below with (you guessed it) recursion
Fractal Tree

```c
void drawTree(Gwindow &gw, double x, double y, double size, int order)
```
Fractal Tree

size

size/2

15°

size/4

45°

size/2

size/2