
Assignment 0: Using the Debugger

Nick Troccoli
This assignment was written by Keith Schwarz. Thanks, Keith!

Hi everybody!

As part of Assignment 0, we'd like you to

get a little bit of practice using the

debugger in Qt Creator.

The debugger is a tool you can use to help

see what your program is doing as you

run it.

It's really useful for helping #nd errors in

your programs, and the more practice you

get with it, the easier it'll be to correct

mistakes in the programs you write.

Think of this guide as a little tutorial

walkthrough to help give you a sense of

how to use the debugger and how to make

sense of what you're seeing.

To start things o$, open up the Name Hash

program you ran in Part One of this assignment.

Scroll down to the nameHash function so that you

can see the entire function in your window.

Move your mouse cursor so that it's in the space

right before the line number for line 66.

Now, click the mouse!

When you do, you should see a red circle with a

little hourglass pop up.

This is called a breakpoint. If we run the program

in debug mode, whenever the program gets to

this line, it will pause and open up the debugger

so we can see what's going on.

Now, we're going to run this program in debug

mode. To do so, click on the “run in debug mode”

button in the bottom-right corner of the screen.

It's the one just below the regular green “run”

button. When you do.

. you should see something like this! Notice that

a bunch of extra panels popped up in Qt Creator.

We'll talk about what each of these windows mean

in a second.

In the meantime, type in the #rst name Ada and hit

enter, as shown here.

Now, type in “Lovelace” as a last name, but

don't hit enter yet!

As soon as you hit enter, a bunch of things are

going to pop up in Qt Creator. Don't panic! It's

normal.

With that said, hit enter,

and watch the magic happen!

Shazam! We're back in Qt Creator, and there's

tons of values showing up everywhere.

There's a lot going on right here. Let's see what's

happening.

First, notice that our red breakpoint now has a

yellow arrow in it.

This yellow arrow indicates where in the program

we are right now. The program stopped running at

this line because we hit that breakpoint you set

earlier.

Whenever you pop up the debugger, it's good to

#gure out exactly where you are in the program

that you're running, so you'll get into the habit

of checking for this yellow arrow.

Next, let's take a look at this panel.

This is called the call stack.

Right now, we know we're in the nameHash

function, because our helpful friend the Yellow

Arrow tells us exactly what line we're on!

However, the yellow arrow can't tell us exactly

how we got to this part of the program. What

part of the program actually called nameHash?

The call stack can tell us exactly that!

Notice that the call stack lists a series of di$erent

functions in order. Here, it has nameHash (where we

are now) at the top, and right below that is Main.

Go and double-click the call to Main on Level

1 (your Qt Creator may tell you Main is on 2
instead of 1, but that is okay).

When you do.

. you'll end up over here!

Notice that the highlighted line here includes a call

to the nameHash function. This the part of the code

that actually called nameHash, which is how we got

to the line with the breakpoint!

Generally speaking, you can use the call stack as a

way to see which function calls got us to the point

where the program paused at the breakpoint!

You might notice that there's some more stu$

in the call stack beyond just main and nameHash.

What are those?

Let's #nd out! Double-click on the line marked
“Main” on Level 2 (or maybe 3 -- click the
next Main down the list). When you do.

. you'll end up with something that looks like this.

Yikes! This looks Hairy and Scary! What happened?

Whenever you start up a program in CS106B, there's

a little bit of code that we automatically call for

you, which does things like setting up the console.

This code will show up in the call stack below your

actual program.

You shouldn't need to dig around this deep in

the call stack, and if you do, it should probably

be a message telling you to back up a bit back to

code that you actually wrote.

So let's jump back to the code that we actually

wrote.

To do that, double-click on Level 0 (or 1 --
see the image below), the call to nameHash. When

you do.

You'll be teleported back to safety!

Let's quickly recap what we've seen so far.

To set a breakpoint so that we can pause the

program and look around, click in the margin just

before the line number where you want to pause.

Once the breakpoint is reached, it will pull up all

sorts of useful information.

The yellow arrow points out where we are right now.

The call stack shows us how we got into the current

function.

Now, let's see how we can read the values of the

variables in this function.

Look up at this panel over here.

This window lets you take a look at all the values

of the local variables that are in scope right now.

Depending on what OS you're using, these might be

in a di$erent order, and there might be some

weird-looking ones in there in addition to nicer

ones like ch and hashVal.

If we ignore the weird-looking ones, we can

see some nice, familiar names.

For example, here you can see the values of
kLargePrime and kSmallPrime, which match the values
they were declared with (you may have to click on
the arrow next to "[statics]" on your computer to

see these values).

We can also see that, at this point, hashVal

is still zero.

As we walk through the program one step at a time,

we'll see these values change.

Now, let's take a look at this for loop.

This loop is a range-based for loop. It says

“for each character in the string first + last,

do something with that character.”

Remember (from a while back) that we entered

the name Ada Lovelace.

If we take a look at the current value of the

variable ch, we can see that it has the value A.

That's the #rst letter of the name Ada Lovelace.

So now we know where we are (line 66), how we got

there (main called nameHash), and the values in the

program at this point.

Now, let's do something really cool – we're going to

run this program one line at a time, watching what

happens at each step!

Right above the stack trace, you'll see there are

some small button icons.

These buttons let you resume the program, stop the

program, walk through it one line at a time, etc.

Move your mouse so that you're hovering over the

button that's third from the left. If you hover

over it, it should say “step over.”

Once you're con#dent that you're on the “Step Over”

button – and not the “Step Into” or “Step Out”

buttons – go and click it! When you do.

.your window should look something like this.

Okay! A few things have changed. Let's see what's

going on.

First, notice that our helpful Yellow Arrow friend

is now pointing at line 67.

We're now at the line right after the one where

we stopped. You just ran a single line of the

program! Pretty cool!

So what did that line of code do?

This line converts ch to lower case. The tolower

function takes in a character and returns a lower-

case version of it, so this overwrites ch with a

lower-case version of itself.

You can actually see this by looking at the values

panel over on the side!

Notice that the value associated with ch has changed

from 'A' to 'a' – it's now in lower-case!

If you'll notice, this value is in red while all the

other values are in black.

This indicates that the value here has changed since

the previous step. This is a really useful way to

keep track of what's changing as you run the

program.

Now, let's take a look at line 67, where we are

right now.

Not gonna lie, this is a pretty dense line of

code. It performs some weird sort of

mathematical calculation on a bunch of di$erent

values.

Fundamentally, though, it's just computing some

weird function of some values and stashing it into

hashVal.

Let's go run that line of code and see what

happens!

Hover over the “Step Over” button, con#rm that

the button you're clicking really is “Step Over,”

and click it! When you do.

. you'll end up with something like this!

Let's see what's changed.

First, notice that the value stored in hashVal

changed to 97. We know that it changed because the

value is in red, and we know that nothing else

changed because nothing else is in red!

Second, notice that we're back up at the top of the for
loop, since that's where the yellow arrow is pointing. We
ended up back here because this is the next line that gets
executed. You might also see that on your computer the

"ch" variable has changed to "<optimized out>". That is okay.

We just single-stepped through a single iteration

of that loop! Pretty cool!

Let's go do it again!

Again, move your mouse over the Step Over

button (and make sure it says “Step Over” and

not something else!), then click it.

Now we're here! Notice that ch now has the value

'd', which is the second letter of the name Ada.

Go click “Step Over” again to run this line of

code.

You should be here now. Notice that none of the

values changed. That makes sense, since all we did

was convert a lower-case 'd' to a lower-case 'd'.

Now, click “Step Over” one more time.

You'll now be at this point in the program. We've

covered up the value of hashVal in this image, because

at this point you should be able to see what hashVal is by

reading the value in the side pane. This is the special value

we want you to tell us when submitting the assignment!

?

To #nish up this section on the debugger, we'd like to show

you two last little techniques that you might #nd useful

when debugging programs.

?

To start this o$, click on the the breakpoint that we set

earlier in the program. If you do.

?

. it should clear the breakpoint. Now, if we were to run

this program again in debug mode, it would not stop at this

point, since nothing's telling it to!

?

Now, take a look back at these buttons.

?

Hover your mouse over the one that's

#fth from the left. When you hover over

it, it should say “Step Out.”

?

If you click this button, it will keep running

this function up until it completes and

returns.

?

Now, go click that button. If you did

everything right.

?

. you should end up with something that

looks like this!

Let's take a minute to get our bearings.

Where exactly are we?

Well, the yellow arrow indicates that we're

back in main again. Cool!

We can see that the nameHash function
returned 1967457. Thanks, debugger!

(well, unfortunately this doesn't work on
a Mac...)

But if you look up over here in the values

window, you can see that hashValue has some

really weird-looking number stored in it.

(You'll almost certainly see something di$erent

on your system.)

But it looks like we're setting hashValue

equal to the number that was returned by

the nameHash function. What's going on?

This is pretty cool, actually!

What's happened is that we've just returned

from nameHash with a value, but since we're

going through the program one step at a time,

we haven't actually assigned that value to

hashValue yet!

Let's do a “Step Over” so that we can #nish

executing this line. Click “Step Over,” and

if you did everything right.

. you should see the right value get stored

(notice it's in red!) and we've moved to the

next line.

At this point, we've seen just about everything

we care about. Rather than single-stepping

all the way to the end, let's just tell the

program to keep on running.

To do this, click on this button. If you hover

over it, it says “Continue,” and that button

means “unpause the program and let it keep

running from here.”

If you do, you should see something like this.

(The program window might not automatically

pop up. That's okay! Just open it manually.)

Our program is now done running!

So there you have it! You've now gotten more

familiar with the debugger!

You know how to set a breakpoint to pause the

program at a particular point.

You know how to read the call stack and to

see the values of local variables.

You know how to single-step the program and

see what values change.

You know how to run a function to completion,

and how to let the program keep on running.

As you write more and more complicated

programs this quarter, you'll get a lot more

familiar using the debugger and seeing how

your programs work.

And, if you continue to build larger and larger

pieces of software, you'll #nd that knowing how

to use a debugger is a surprisingly valuable

skill!

Hope this helps, and welcome to CS106B!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

