
Monday, April 16, 2018

Programming Abstractions

Spring 2018

Stanford University 

Computer Science Department


Lecturer: Chris Gregg


reading:

Programming Abstractions in C++, Chapter 5.4-5.6

CS 106B 
Lecture 7: Introduction to 
Recursion



Today's Topics
• Logistics: 
• Serafini Due Thursday, April 19th, noon 

• One submission of two files (wordLadder, Ngrams) 
• Recursion!



A Little Demo

The Towers of Hanoi Puzzle

This can be solved by recursion!



A Little Demo
By the end of today, we will be able to write this program, and 

you may talk about the algorithm in section



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:

Illegal move!



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:



Towers of Hanoi

Here is the way the game is played:

etc.



What is Recursion?



What is Recursion?

Recursion: 

A problem solving technique in which problems are solved by 
reducing them to smaller problems of the same form.



Why Recursion?

1. Great style 
2. Powerful tool 
3. Master of control flow



Pedagogy

Many simple examples



Recursion In Programming

In programming, recursion simply means that a function 
will call itself: 

int main() { 
   main(); 
   return 0; 
}

(this is a terrible example, and will crash!)

main() isn't supposed to call itself, but if we do write this 
program, what happens?

SEG FAULT!

We'll get back to programming in a minute...



Recursion In Real Life

Recursion 
• How to solve a jigsaw puzzle 

recursively (“solve the puzzle”) 

• Is the puzzle finished? If so, stop. 
• Find a correct puzzle piece and 

place it. 
• Solve the puzzle

ridiculously hard puzzle



Recursion In Real Life
Let's recurse on you. 

How many students total are directly behind you 
in your "column" of the classroom?

Rules: 
1. You can see only the people directly in front and behind you. 

So, you can't just look back and count. 
2. You are allowed to ask questions of / respond to the people in 

front / behind you.
How can we solve this problem recursively?



Recursion In Real Life
Answer: 

1. The first person looks behind them, and sees if 
there is a person there. If not, the person 
responds "0". 

2. If there is a person, repeat step 1, and wait for 
a response. 

3. Once a person receives a response, they add 
1 for the person behind them, and they 
respond to the person that asked them.



In C++:

int numStudentsBehind(Student curr) { 
    if (noOneBehind(curr)) { 
        return 0; 
    } else { 
        Student personBehind = curr.getBehind(); 
        return numStudentsBehind(personBehind) + 1 
    } 
}

Recursive call!



In C++:
The structure of recursive functions is typically like the following: 

recursiveFunction() { 
    if (test for simple case) { 
        Compute the solution without recursion 
    } else { 
        Break the problem into subproblems of the same form 
        Call recursiveFunction() on each subproblem 
        Reassamble the results of the subproblems 
    } 
}



In C++:
Every recursive algorithm involves at least two cases: 

• base case: The simple case; an occurrence that can be 
answered directly; the case that recursive calls reduce to. 

• recursive case: a more complex occurrence of the problem that 
cannot be directly answered, but can be described in terms of 
smaller occurrences of the same problem. 



In C++:

int numStudentsBehind(Student curr) { 
    if (noOneBehind(curr)) { 
        return 0; 
    } else { 
        Student personBehind = curr.getBehind(); 
        return numStudentsBehind(personBehind) + 1 
    } 
}

Base case



In C++:

int numStudentsBehind(Student curr) { 
    if (noOneBehind(curr)) { 
        return 0; 
    } else { 
        Student personBehind = curr.getBehind(); 
        return numStudentsBehind(personBehind) + 1 
    } 
}

Base case

Recursive case



In C++:

int numStudentsBehind(Student curr) { 
    if (noOneBehind(curr)) { 
        return 0; 
    } else { 
        Student personBehind = curr.getBehind(); 
        return numStudentsBehind(personBehind) + 1 
    } 
}

Recursive call



Three Musts of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no 
recursive calls

3. When you make a recursive call it should be to a 
simpler instance and make forward progress 

towards the base case.



There is a "recursive leap of faith"



More Examples!

The power() function: 

Write a recursive function that takes in a number (x) and an 
exponent (n) and returns the result of xn 



Powers



Powers
• Let's code it



Powers
• Each previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;
// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// second call: power (5, 2) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// third call: power (5, 1) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// fourth call: power (5, 0) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}



Powers
• Each previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;
// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// second call: power (5, 2) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// third call: power (5, 1) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// fourth call: power (5, 0) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

This call returns 1



Powers
• Each previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;
// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// second call: power (5, 2) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// third call: power (5, 1) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

equals 1 from call

this entire statement returns 5 * 1



Powers
• Each previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;
// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// second call: power (5, 2) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

equals 5 from call

this entire statement returns 5 * 5



Powers
• Each previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;
// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

// first call: power (5, 3) 
int power(int x, int exp) { 
    if (exp == 0) { 
        return 1; 
    } else { 
        return x * power(x, exp - 1); 
    } 
}

equals 25 from call

this entire statement returns 5 * 25

the original function call was to this one, so it returns 125, which is 53



Faster Method!
int power(int x, int exp) { 
    if(exp == 0) { 
        // base case 
        return 1; 
    } else { 
        if (exp % 2 == 1) { 
        // if exp is odd 
            return x * power(x, exp - 1); 
        } else { 
            // else, if exp is even 
            int y = power(x, exp / 2); 
            return y * y; 
        } 
    } 
} Exponentiation by squaring 

Big O???
O(log n) -- yay!



Mystery Recursion: Trace this function

int mystery(int n) { 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n / 10; 
        int b = n % 10; 
        return mystery(a + b); 
    } 
}

What is the result 
of mystery(648)? 

A.8 
B.9 
C.54 
D.72 
E.648



Mystery Recursion: Trace this function

int mystery(int n) { // n = 648 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n / 10; // a = 64 
        int b = n % 10; // b = 8 
        return mystery(a + b); // mystery(72); 
    } 
}



Mystery Recursion: Trace this function

int mystery(int n) { // n = 648 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n/10; // a = 64 
        int b = n % 10; // b = 8 
        return mystery(a + b); // mystery(72); 
    } 
}

int mystery(int n) { // n = 72 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n / 10; // a = 7 
        int b = n % 10; // b = 2 
        return mystery(a + b); // mystery(9); 
    } 
}



Mystery Recursion: Trace this function

int mystery(int n) { // n = 648 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n/10; // a = 64 
        int b = n % 10; // b = 8 
        return mystery(a + b); // mystery(72); 
    } 
}

int mystery(int n) { // n = 72 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n/10; // a = 7 
        int b = n % 10; // b = 2 
        return mystery(a + b); // mystery(9); 
    } 
}

int mystery(int n) { // n = 9 
    if (n < 10) { 
        return n; // return 9; 
    } else { 
        int a = n / 10; 
        int b = n % 10; 
        return mystery(a + b); 
    } 
}



Mystery Recursion: Trace this function

int mystery(int n) { // n = 648 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n/10; // a = 64 
        int b = n % 10; // b = 8 
        return mystery(a + b); // mystery(72); 
    } 
}

int mystery(int n) { // n = 72 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n / 10; // a = 7 
        int b = n % 10; // b = 2 
        return mystery(a + b); // mystery(9); 
    } 
}

returns 9



Mystery Recursion: Trace this function

int mystery(int n) { // n = 648 
    if (n < 10) { 
        return n; 
    } else { 
        int a = n / 10; // a = 64 
        int b = n % 10; // b = 8 
        return mystery(a + b); // mystery(72); 
    } 
}

returns 9

What is the result 
of mystery(648)? 

A.8 
B.9 
C.54 
D.72 
E.648



More Examples! isPalendrome(string s)

Write a recursive function isPalindrome accepts a string and 
returns true if it reads the same forwards as backwards. 

isPalindrome("madam") → true  
isPalindrome("racecar") → true  
isPalindrome("step on no pets") → true  
isPalindrome("Java") → false  
isPalindrome("byebye") →false



Three Musts of Recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no 
recursive calls

3. When you make a recursive call it should be to a 
simpler instance and make forward progress 

towards the base case.



isPalindrome
// Returns true if the given string reads the same 
// forwards as backwards. 
// Trivially true for empty or 1-letter strings. 
bool isPalindrome(const string& s) { 
    if (s.length() < 2) { // base case 
        return true; 
    } else { // recursive case 
        if (s[0] != s[s.length() - 1]) { 
            return false; 
        } 
        string middle = s.substr(1, s.length() - 2); 
        return isPalindrome(middle); 
    } 
}



Flashback to 106A: Hailstone
// Couts the sequence of numbers from n to one 
// produced by the Hailstone (aka Collatz) procedure 
void hailstone(int n) { 
    cout << n << endl; 
    if(n == 1) { 
        return; 
    } else { 
        if(n % 2 == 0) { 
            // n is even so we repeat with n/2 
            hailstone(n / 2); 
        } else { 
            // n is odd so we repeat with 3 * n + 1 
            hailstone(3 * n + 1); 
        } 
    } 
} 



Flashback to 106A: Hailstone
// Couts the sequence of numbers from n to one 
// produced by the Hailstone (aka Collatz) procedure 
void hailstone(int n) { 
    cout << n << endl; 
    if(n == 1) { 
        return; 
    } else { 
        if(n % 2 == 0) { 
            // n is even so we repeat with n/2 
            hailstone(n / 2); 
        } else { 
            // n is odd so we repeat with 3 * n + 1 
            hailstone(3 * n + 1); 
        } 
    } 
} 

3. When you make a recursive call it should be to a 
simpler instance and make forward progress 

towards the base case.

Is this simpler???



Flashback to 106A: Hailstone

Hailstone has been checked for values up to 5 x 1018

but no one has proved that it always reaches 1! 

hailstone(int n)

There is a cash prize for proving it!

The prize is $1400.



Flashback to 106A: Hailstone

Print the sequences of numbers that you take to get from N 
until 1, using the Hailstone (Collatz) production rules: 

If n == 1, you are done. 

If n is even your next number is n / 2. 

If n is odd your next number is 3*n + 1.



Back to Towers of Hanoi
This is a hard problem to solve iteratively, but can be done recursively (though the 

recursive insight is not trivial to figure out)



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi

•We need to find a very simple case that we can solve 
directly in order for the recursion to work. 

•If the tower has size one, we can just move that single 
disk from the source to the destination. 

•If the tower has more than one, we have to use the 
auxiliary spindle.



Back to Towers of Hanoi

•We can break the entire process down into very simple 
steps -- not necessarily easy to think of steps, but 
simple ones!



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi



Back to Towers of Hanoi

Repeat th
ese

 

ste
ps a

t e
ach 

sta
ge!



Back to Towers of Hanoi



Recap

•Recursion 
•Break a problem into smaller subproblems of the same form, and call the same 
function again on that smaller form. 

•Super powerful programming tool 
•Not always the perfect choice, but often a good one 
•Some beautiful problems are solved recursively 

•Three Musts for Recursion: 
1.Your code must have a case for all valid inputs 
2.You must have a base case that makes no recursive calls 
3.When you make a recursive call it should be to a simpler instance and make 
forward progress towards the base case. 



References and Advanced Reading

• References: 
• http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html 
• Why is iteration generally better than recursion? http://stackoverflow.com/a/

3093/561677 

• Advanced Reading: 

• Tail recursion: http://stackoverflow.com/questions/33923/what-is-tail-recursion  

• Interesting story on the history of recursion in programming languages: http://
goo.gl/P6Einb

http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/questions/33923/what-is-tail-recursion
http://goo.gl/P6Einb
http://goo.gl/P6Einb


Extra Slides



Converting Decimal to Binary

Recursion is about solving a small piece of a large problem.  
– What is 69743 in binary? 
    • Do we know anything about its representation in binary? 
– Case analysis: 
    • What is/are easy numbers to print in binary? 
    • Can we express a larger number in terms of a smaller 
number(s)?



Converting Decimal to Binary

Suppose we are examining some arbitrary integer N.  
– if N's binary representation is     10010101011 
– (N / 2)'s binary representation is 1001010101  
– (N % 2)'s binary representation is                   1 

– What can we infer from this relationship?



Converting Decimal to Binary
// Prints the given integer's binary representation. 
// Precondition: n >= 0 
void printBinary(int n) { 
    if (n < 2) { 
        // base case; same as base 10 
        cout << n; 
    } else { 
        // recursive case; break number apart 
        printBinary(n / 2); 
        printBinary(n % 2); 
    } 
}


