CS 1068

ecture 9. Recursive ®
Backtracking 1:
Decision Irees o e o o oo

Friday, April 20, 2018
000 © O © 000000 ¢ 00000000

Programming Abstractions
Spring 2018

Stanford University

Computer Science Department

® ® & 000 O @
Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 8.2-8.3

loday's lopics

®| OQistics:
e Assignment 3: Fractals and Recursion: Due next Thursday
ePair programming”? What is it

eRecursion and Decision Trees
e[-0lders and Directories
eReducible Words

eRecursive Backtracking: Exhaustive Search
ePermutations

Assignment 3: Recursion

1) Fractals and Graphics
2) Grammar Solver

Assignment 3A: Fractals and Graphics

A A AR AR AR AN AR AN
: \ V4 V :

VA v VALY,
7Y 7
\/ \/
VAVAVAVAVAVAVLY. \VAVAVAVAVAV,V.
AT A A, N6
VAVARRA v,V VAVARRA VLY.
v, ¥, v, Y/

Vexev

N VVVVVVVVVVIVVVW VAV
TAAVAACAVAA
v$v Vev V#V Vev
VVVV VVVYV
vAv vAv

Order-2 Order-3 ... Order-6

X X y vy size 200 order 1 # Animate?

(x=0, y=228), color=#FFFFFF (done)

Order-5 tree fractal

Assignment 3B: Grammar Solver

write a function for generating random
sentences from a grammar.

example describing a small subset of the English language. Non-
terminal names such as <s>, <np> and <tv> are short for linguistic
elements such as sentences, noun phrases, and transitive verps:

<S>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=thela

<adjp>::=<adj>|<adj> <adijp>
<adj>::=big|fat|green|wonderful|faulty|subliminal|pretentious
<n>::=dog|cat|man|university|father|mother|child|television
<pn>::=John|Jane|Sally|Spot|Fred|Elmo

<vp>:i=<tv> <np>|<iv>

<tv>::=hit|honored|kissed|helped
<iv>::=died|collapsed|laughed|wept

Viore Recursion!

¢SO0 far, you might e thinking to yourself: why do | need recursion, when | can
solve lots of problems using simple [oops?

e-xample: A factorial Is a recursively defined number:

n!=n*(n-1)!, where 1! =1

4!

=4 * 3!
=4*3* 2!
=3*2*1!
=3*2*1
= 24

Viore Recursion!

o| ct's write the factorial function recursively
n!=n*(n-1)!, where 1! =1

long factorial(long n) {

Viore Recursion!

o| ct's write the factorial function recursively
n!=n*(n-1)!, where 1! =1

long factorial(long n) {
// base case
if (n == 1) {
return 1;
s

// recursive case
return n % factorial(n-1):

Viore Recursion!

eBut wait...we could have just written this iteratively, using a loop!
n!=n*(n-1)!, where 1! =1

long factorial(long n) {

Viore Recursion!

eBut wait...we could have just written this iteratively, using a loop!
n!=n*(n-1)!, where 1! =1

long factorial(long n) {
long answer = 1;
while (n > 1) {
answer x= n;
n——,
}

return answer;

Viore Recursion!

¢ [hese relatively easy recursive problems may have beautiful
solutions, but there isn't anything special about solving the problem
recursively.

e [0day, we WIll discuss problems that deal with “iterative branching®
-- and It Is these problems that demonstrate the power of a
recursive solution.

*| ct's go!

Recursion and Decision lrees

¢ [he following Is a graphical depiction of the files in a folder on my computer:

Name
v BB ExampleFolder * [he top-level folder is calleo
v [3 child1 'ExampleFolder”, and it has three children
£ Ldontwanna_grow_up.doc folders, called "child1", "child2", and
* | kid_stuff.txt .] .
v BB child? Chlld3 .
¥ | | nothing_to_see_here
"l launch_codes.txt echild1 has two files,
¥ | | treasure = I
& diamonds.txt I_dont_wanna_grow_up.doc" and
¢ gold.txt "kid_stuff.txt"
sl Loch_Ness_Proof.png
v | | child3

. °
*" famous_youngest_children.txt etc.

Recursion and Decision lrees

o[ct's re-draw that structure a bit, into a "tree" format.

| ExampleFolder

_— T

~ | child1 . child2 ~_ child3
"= i_dont_wanna, kid_stuff.txt | nothing_to_see_here *" famous_youngest_
_grow_up.doc / \ children.txt
* launch_codes.txt | treasure

I

¥ diamonds.txt ¥ gold.txt & Loch_Ness_Proof.png

Recursion and Decision lrees

f we flip It
over...there IS a root
at the bottom and
leaves where there
are N0 more
branches.

DUd"J00Id SSBN Y207 == TR 1xy1'pjob [Xpspuowelp [o

ainseaJ) [X)'sapodyoune| Iy

<\ ~

alay aas 0] buyiou |

IX3'usJp|iyo
“1sabunofTsnowey [

10

EPIYD [

aop'dn moub

ﬁ

XYUMS Py [, gEuUuBMTIUOR

)

ZPIY2 [

S

Japjo4adwexy |

LPIY2 |

Recursion and Decision lrees

Flipped back, this Is
what we call a tree In
computer science.

- Examplefolder

— LN

| child2
!

| dont wanna

~_ child3

4

¥ famous_youngest_
children.txt

-

Y]

_grow_up.doc

¥ kid_stuff.txt | nothing_to_see_here

« (\M

¥ launch_codes.txt " treasure

¥ diamonds.txtl | gold.txt § & Loch_Ness_Proof.pnc

A folder Is Just a recursive container!

o A folder Is a tree!

| ExampleFolder

_— T

7 child1 " child2 | child3
k) i_dont_wanna * kid_stuff.txt | 7] nothing_to_see_here ¥ | famous_youngest_
_grow_up.doc / \ children.txt
% launch_codes.txt "W treasure

I

%) diamonds.txt % gold.txt & Loch_Ness_Proof.png =

A folder Is Just a recursive container!

o All children are also complete trees!

- ExampleFolder

— /l\

1 child1 W child2 1 child3
i_dont_wanna] kid_stuff.txt | nothing_to_see_here “ | famous_youngest_
_grow_up.doc / \ children.txt

“ launch_codes.txt | treasure

I

“ diamonds.txt ¥ gold.txt & Loch_Ness_Proof.png

A folder Is Just a recursive container!

o All children are also complete trees!

ExampleFolder

| T~

&
child 1 child2 child3
- i_dont_wanna % kid_stuff.txt "7l nothing_to_see_here * famous_youngest_
_grow_up.doc / \ children.txt
% launch_codes.txt ' treasure

AT

%) diamonds.txt ¥ gold.txt & Loch_Ness_Proof.png 7

A folder Is Just a recursive container!

o All children are also complete trees!

- | ExampleFolder

— /l\

1 child1 7 child2 7 child3
M- i_dont_.wanna, % kid_stufftxt |7 nothing_to_see_here ¥ famous_youngest_
_grow_up.doc / \ children.txt
* |aunch_codes.txt/treasure

% diamonds.txt ¥ gold.txt & Loch_Ness_Proof.png /5o

-~
\3
N,
S T 4,
S
S

/ < W
IS/ Zn> “\%\
’ * & o=y
-~ Y

A folder Is Just a recursive container!

o All children are also complete trees!

- | ExampleFolder

e

| childT ~ child2 ~_ child3
M- _dont_wanna, | kid_stuff.txt ~_ nothing_to_see_here ¥ famous_youngest_
_grow_up.doc / \ children.txt
* launch_codes:txt ' treasure

|

¢ diamonds.txt ®] gold.txt & Loch. Ness_Proof.png i,

”
\3
€N
s «0 »:;'-'." N £/'9
S
~

/ < W
WIS ZEm 2\ZN
’ * & Ry
-~ Y

| et's write a program to output all files in a folder

o All children are also complete trees!

|
| ExampleFolder) 1, ///;?’
- /|
/)
- childl - | child2 - | child3
"= i_dont_wanna, kid_stuff.txt | nothing_to_see_here *" famous_youngest_
_grow_up.doc / \ children.txt
* launch_codes.txt | treasure

I

% diamonds.txt ¥ gold.txt Loch_Ness_Proof.png

Another Example: Reducible Words

Here IS a word puzzle: "Is there a nine-letter =nglisn
word that can be reduced 1o a single-letter word one
letter at at time by removing letters, leaving a legal
word at each step”

Another Example: Reducible Words

4-letter example:

cart & art = at = a

can you think of a nine letter word®

Another Example: Reducible Words

startling

startling &= starling == staring == string ==sting @=sing @=sin &N &

S there really just one nine-letter word with this
oroperty”?

All Reducible 9-letter words

can we do this iteratively”?

t would be very messy!

All Reducible 9-letter words

can we do this recursively”

ves!
what Is the decision tree?

Reducabillity Decision Tree

cart

Cri

Reducabillity Decision Tree

cart

art CIt ca car

T at ar

Reducabillity Decision Tree

cart
W v
art cri cat car

el DNl D Nl Nl DN

It at ar it ¢t ¢cr at ¢t ca ar cr ca

Reducabillity Decision Tree

cart
W v
art cri cat car

el DNl D Nl Nl DN

T at ar 1t ¢t ¢cr at ¢t ca ar cr ca
A AN A ANEA /N /N /N AANA

tr ta r a tr t C [C ta T C ac ra rcCc ac

Reducabillity Decision Tree

cart
W v
art cri cat car

T at ar 1t ¢t ¢cr at ¢t ca ar cr ca
AARA A ANEA /N /N /N AANA

tr ta ra tr t C [C ta T C ac ra rcCc ac

Reducabillity Decision Tree

cart
W v
art cri cat car

el DNl D Nl Nl

T at ar 1t ¢t ¢cr at ¢t ca ar cr ca
A AN A ANEA /N /N Y\ AANA

tr ta r a tr t C [C ta T C ac ra rcCc ac

Decision Tree Search Template

bool search(currentState) {
if (isSolution(currentState)) {
return true;
} else {
for (option : moves from currentState) {
nextState = takeOption(curr, option);
if (search(nextState)) {
return true;
+

h

return false:

Reducible Wora

| et's define a reducible word as a word that can be
reduced down to one letter by removing one character at
a time, leaving a word at each step.

Base case;
A one letter word In the dictionary.

Recursive Step:
Any multi-letter word Is reducible It you can remove
a letter (legal move) to form a shrinkable word.

How the algorithm works

cart
. —
art cri cat car

gl DNl D Nl D Nl DN

T at ar 1t ¢t ¢cr at ¢t ca ar cr ca
A AN A ANEA /N /N /N AANA

tr ta r a tr t C [C ta T C ac ra rcCc ac

art: 1Is a word

How the algorithm works

cart
. —
art cri cat car

et DNl D Nl D Nl D

T at ar 1t ¢t ¢cr at ¢t ca ar cr ca
/N /N A ANEA /N /N /N AANA

tr ta r a tr t C [C ta T C ac ra rcCc ac

rt: Nnot a word

How the algorithm works

cart
. —
art cri cat car

at ar rt ¢t ¢cr at ¢t ca ar cr ca
/N /\ A ANEA /N /N /N AANA

/

tr ta r a tr t C [C ta T C ac ra rcCc ac

at: IS a worg

How the algorithm works

cart
. —
art cri cat car

at ar rt ¢t ¢cr at ¢t ca ar cr ca
/N /\ A ANEA /N /N /N AANA

/

tr ta r a tr t C [C ta T C ac ra rcCc ac

t: not a word

How the algorithm works

cart
. —
art cri cat car

at ar rt ¢t ¢cr at ¢t ca ar cr ca
‘\ /\ A ANEA /N /N /N AANA

/
L r

a [a tr t C [C ta T C ac ra rcCc ac

a: IS a word
there Is a solution!

How the algorithm works

cart
. —
art cri cat car

at ar 1t ¢t ¢cr at ¢t ca ar cr ca
‘\ /\ A ANEA /N /N /N AANA

/
L r

a [a tr t C [C ta T C ac ra rcCc ac

a: IS a word
there Is a solution!

How the algorithm works

cart
L, —
art cri cat car

at ar 1t ¢t ¢cr at ¢t ca ar cr ca
‘\ /\ A ANEA /N /N /N AANA

/
L r

a [a tr t C [C ta T C ac ra rcCc ac

a: IS a word
there Is a solution!

How the algorithm works

Crt cat car

gl DNl D Nl DN

ar 't ¢t ¢cr at ¢t ca ar cr ca
/\ A ANEA /N /N /N AANA

r a tr t C [C ta T C ac ra rcCc ac

"

L r

a: IS a word
there Is a solution!

Reducible Wora

s there really just one nine-lett

er word”?
[("

Recursive Backtracking: Templates A

There are basically five different problems you might
see that will require recursive backtracking:

- Determine whether a solution exists
» FINA a solution

» FINd the best solution

- Count the number of solutions

- Print/find all the solutions

Jumble

Since 1954, the JUMBLE has been a Q@M&E by v Lot an et

Unscramble these four Jumbles, \\
" one letter to each square, ’
Stap ‘ e I n n eWS papers " to form four Qrdinar;/:1 words. incit},c?ealsrr?ore

The basic idea Is to unscramble the | KNIDY
anagrams for the words on the left, and () |]

©2015 Tribune Content Agency, LLC
All Rights Reserved.

B o) I c ['_
g’ 1o have

ut the new, free JUST JUMBLE app

then use the letters In the circles as CEGIA
another anagram to unscramble to &
answer the pun In the comic. SRONEE
As a Kid, | played the puzzle every day, but) 5
davs | just couldn't d ble th AN KRCHTECT BECAUSE SHe
some days | just couldn't descramble the ———— RCHITECT PECAUSE

words. SiX letter words have 6! == 720 o T e
combinations, which can be tricky! e AT,
| figured | would write a computer

Print answer here: .".‘.‘.
program to print out all the permutations! — saturer:

(Answers tomorrow)

Jumbles: ELUDE JOINT AGENCY EASILY
Answer: The cyclops’ son wanted an action figure for his
birthday, so they bought him a — G- “EYE” JOE

Jumble

Since 1954, the JUMBLE has been a Q@ME@ by v Lot an et

Unscramble these four Jumbles, \\
" one letter to each square, ’
Stap ‘ e I n n eWS papers " to form four Qrdinar;:1 words. inc’t},c?eglﬁrcl)ore

The basic idea Is to unscramble the KNIDY ~ \ z///
anagrams for the words on the left, ano (DITIN|K] Y| \

then use the letters in the circles as LEGIA g
another anagram to unscramble to (A)G(I|L|E|:

answer the pun in the comic. “RONEE

As a Kid, | played the puzzle every day, but gE[NJC[OJR[E
some days | just couldn't descramble the
words. Six letter words have 6! == 720
combinations, which can be tricky!

| figured | would write a computer print answer here: {2 (DD TN TY T OIN)

Jumbles: ELD I A I N O D T

Answer: The cyciops son waniea an acuon ngure 1or nis
birthday, so they bought him a — G- “EYE” JOE

N
=<

w, f JUST JUMBLE app

ck out th

0}

Ch

THE MATH TEACHER HRED
AN ARCHITECT BECAUSE SHE

TUVEDO WANTED A NEW ———

Now arrange the circled letters
E V O U to form the surprise answer, as

suggested by the above cartoon.

program to print out all the permutations! saurays

FPermutations

My original function to print out all permutations of four letters:

tvoid permuted4(string s) { ‘
for (int 1 = 0; i < 4; i++) { '
for (int j = 0; j < 4 ; j++) {
if (j == 1) {
continue; // 1ignore
}

for (int k = 0; k < 4; k++) {
if (k==3 || k == 1) {
continue; // 1ignore
I3

for (int w = 0: w < 4: w++) {
if (w==K || w==73 || w==1) {
continue; // 1ignore
F

cout << s[i] << s[j] << sl[k] << s[w] << endl;

Permutations

| also had a permuteb() function...

tvoid permute5(string s) {
| for (int i = 0; 1 < 5; i++) {
for (int j = 0; j <5 ; j++) {
if (3 == 1) {
continue; // 1gnore

I3
for (int k = 0; k < 5; k++) {
if (k==73 || k ==1) A
continue; // 1gnore
| I3
: for (int w = 0; w < 5; w++) {
) if(w:: ||W==j||W==i){
| continue; // 1gnore
: s
| for (int x = 0; x < 5; x++) {
//i-' if(x:: ||X=='||X=='||X==W){
j continue;
: ¥
; cout << " " << s[i] << s[j] << slk] << s[w] << s[x] << endl;
I3
b
}
| b g

FPermutations

'void permute6(string s) {
| for (int 1 = 0; i < 5; i++) {
for (int j = 0; j <5 ; j++) {
if (j == 1) {
continue; // 1ignore

| }

g for (int k = 0; k < 5; k++) {

| if (k==73 || k ==1) {

; continue; // 1gnore

; ¥

f for (int w =0; w < 5; w++) { | |

b if (Ww==Kk || w==73 || w==1) {

continue; // ignore What has been seen
| } _
| for (int X = @ x < 5: x#+) { cannot be un-seen
| if (x ==K [| x==3j || x==1 [[x==w) { |
i continue;

f }

| for (int y = 0; vy < 6; y++) {

| ifly=k|ly=73[ly=1][ly=w]||]y==X)1

| continue;

{ I

: cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << sl[y] << endl;

} }

f b

:~ } } r]

L This Is not tenable!

i

Tree Framework — Permutations

Permutations do not lend themselves well to iterative looping because we are really
rearranging the letters, which doesn't follow an iterative pattern.
Instead, we can look at a recursive method to do the rearranging, called an exhaustive

algorithm. We want to investigate all possible solutions. We don't need to know how many
letters there are in advance!

IN pseudocode:

If you have no more characters left to rearrange, print current permutation
for (every possible choice among the characters left to rearrange) {

Make a choice and add that character to the permutation so far

Use recursion to rearrange the remaining letters

In English:
- The permutation starts with zero characters, as we have all the letters in the original string
to arrange. The base case Is that there are no more letters to arrange.

Take one letter from the letters left, add it to the current permutation, and recursively g =2
continue the process, decreasing the characters left by one. R,

Tree Framework — Permutations

- The algorithm in C++:

v01d permute(string soFar, string rest) {
if (rest == "") A
cout << soFar << endl;
} else {
for (int 1 = @; i < rest.length(); i++) {
string remaining = rest.substr(@, i) + rest.substr(i+l);
permute(soFar + rest[i], remaining);

- Example call:
recPermute ("", "abcd") ;

Tree Framework — Permutations

soFar: ""
rest: "abcd"

o e —— o

1A " "b" LA " "d"
"bcd" 1A acd" 1A abd" 1A abc 1A

/|\ /|\ /|\ /|\
AA&A bA 74N A A 74N A A Ac A

ac bad bca bcd bda bdc cab cad cba cbd cda dab dac

abcd abdec acbd acdb adbec adcb bacd badc bcad becda Dbdac bdca cabd cadb c¢cbad c¢cbda c<¢dab cdba dabc dacb dbac dbca dcab dcba

v Exhaustive This Is a tree!

v Works for any length string
v NI different results
v Can think of this as a "call tree" or a "decision tree"

Iree Framework — Helper functions

Here Is the a\gorlthm again:

fv01d permute(strlng soFar,strlng rest) { _.%..._.4_,,-,,,«.,“,,_.

if (rest == "") {
cout << soFar << endl;
} else {

for (int i = @; i < rest.length(); i++) { |
string remaining = rest.substr(@, i) + rest.substr(i+1); |
permute(soFar + rest[i], remaining);

Some might argue that this isn't a particularly good function, because it
requires the user to always start the algorithm with the empty string for the
soFar parameter. It's ugly, and it exposes our internal parameter.

What we really want is a permute (string s) function that is cleaner.
We can overload the permute () function with one parameter and have a
cleaner permute function that calls the original one with two parameters.

Iree Framework — Helper functions

- The cleaner interface:

ivoid permute(string soFar, string rest) { f
* if (rest == "") { ‘
cout << soFar << endl;
} else {
for (int 1 = @; 1 < rest.length(); i++) { :
string remaining = rest.substr(@, i) + rest.substr(i+l); |
permute(soFar + rest[i], remaining); |

o
4
f
“
"

fvoid permute(string s) {
| permute("", s);

4
K
I". [
} } :
h \
PP W) s " e N o P e - o e " DR PTOIE e " s e —_— oy o g S e s PP O S I e PR P A 2 NPT S U L TR R PP g x P OS2 P e S P Ry o LT,

- Now, a user only has to call permute ("tuvedo"), which hides the helper
recursion parameter.

References and Advanced Reading

*References:

e Understanding permutations: http://stackoverflow.com/questions/7537 791/
understanding-recursion-to-generate-permutations

e Maze algorithms: https://en.wikipedia.org/wiki’/Maze solving algorithm

Advanced Reading:

e Exhaustive recursive backtracking: https://see.stanford.edu/materials/icspacs106b/
h19-recbacktrackexamples.pdf

e Backtracking: https://en.wikipedia.org/wiki/Backtracking

http://stackoverflow.com/questions/7537791/understanding-recursion-to-generate-permutations
http://stackoverflow.com/questions/7537791/understanding-recursion-to-generate-permutations
https://en.wikipedia.org/wiki/Maze_solving_algorithm
https://see.stanford.edu/materials/icspacs106b/h19-recbacktrackexamples.pdf
https://see.stanford.edu/materials/icspacs106b/h19-recbacktrackexamples.pdf
https://en.wikipedia.org/wiki/Backtracking

Extra Slides

Pair Programming — what is it

This Is the first assignment where you are allowed to work with a
partner from your section. But what is "pair programming"

Palr programming means that two people work together on an

assignment, completely.

Pair programmers must never be working on the assignment
iIndependently, and should both be looking at the same screen, with one
of the students typing (they should take turns).

- Students may ask conceptual questions in the LalR and on Piazza
iINndependently, but If you are In a pair you must get help on the code
together.

[f one student has taken the course before, there can be no overlapping

code from that student's prior work.

