knapsack.cpp

// This program demonstrates solves the knapsack problem

// By: Chris Gregg
// Date: April 23, 2018

#include <jostream>
#include '"'console.h"
#include '"vector.h"
#include "simpio.h"

using namespace std;

// objectT struct

struct objectT {
int weight;
int value;

’

// function prototypes
int fillKnapsack(Vector<objectT> &objects, int targetWeight);
int fillKnapsack(Vector<objectT> &objects, int weight, int score);

int main() {
// solution: 44
int valueslC]l = {12,10,8,11,14,7,9};
int weightsCl = {4,6,5,7,3,1,6%};
int targetWeight = 18;

// solution: 67

//int valuesC]l = {5,20,3,50,5,4,15,12,6,7%};
//int weightsCl = {6,15,11,12,6,11,13,7,17,13%;
//int targetWeight = 25;

// solution: 7

//int valuesCl = {3,4,5,6);
//int weightsCl = {2,3,4,5};
//int targetWeight = 5;

int numItems = sizeof(values) / sizeof(int);
Vector<objectT> testObjects;

for (int i=0; i < numItems; i++) {
objectT object;
object.value = values[il;
object.weight = weights[il;
testObjects.add(object);
X
cout << "Best solution has a best score of: "
<< fillKnapsack(testObjects, targetWeight) << endl;
return 0;

int fillKnapsack(Vector<objectT> &objects, int targetWeight) {
return fillKnapsack(objects,targetWeight,0);

int fillKnapsack(Vector<objectT> &objects, int weight, int bestScore)
if (weight < 0) return 0; // we tried too much weight!
int localBestScore = bestScore;
int obSize = objects.size();
for (int i = 0; i < obSize; i++) {
objectT originalObject = objects[il;
int currValue = bestScore + originalObject.value;
int currWeight = weight - originalObject.weight;
// remove object for recursion
objects.remove(i);
currValue = fillKnapsack(objects,currWeight,currValue);
if (localBestScore < currValue) {
localBestScore = currValue;
X
// replace
objects.insert(i,originalObject);
X
return LlocalBestScore;



mazeSolver.cpp

// solveMaze should be passed a human-readable maze
// with a start and finish, and a start position of 1,1
// dead-end paths that have been tested should be marked
// with lowercase x
// The correct path should be marked with periods, .
void solveMazeRecursive(Grid<int> &maze) {
solveMazeRecursive(1,1,maze);
maze[11[1] = 'S'; // replace start, which is removed during solving stage

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {
/ be careful! 2d arrays seem backwards and upside down
// compared to cartesian coordinates:
// maze[01L[0] == top Lleft

// maze[1]1L0] == one down, zero to the right
// maze[O1L1] == zero down, one to the right
// mazelrowlCcoll == row down and col to the right
if (mazeLrowlLcoll == 'X') {
return false;
3
if (mazelrowlLcoll == '.") {
return false;
3
if (mazeLrowlLcoll == 'F') {
return true;
3
mazelrowlLcoll = '.';

// Recursively call solveMazeRecursive(row,col)
// for north, east, south, and west
// 1If one of the positions returns true, then return true

// north
if (solveMazeRecursive(row-1,col,maze)) {
return true;

>

// east
if (solveMazeRecursive(row,col+1,maze)) {
return true;

>

// south

if (solveMazeRecursive(row+1,col,maze)) {
return true;

X

// west
if (solveMazeRecursive(row,col-1,maze)) {
return true;

>

mazelrowlLcoll = 'b';
return false;



