CS 106B
 Lecture 11:
 Sorting

Wednesday, April 25, 2018

Programming Abstractions
Spring 2018
Stanford University
Computer Science Department
Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Section 10.2

Today's Topics

-Logistics

- Midterm Review -- TBA (details on Piazza)
-Midterm: Next Thursday, in Hewlett 200
-Test BlueBook before coming to class - a good way is to do the practice exams
- Sorting
- Insertion Sort
- Selection Sort
- Merge Sort
- Quicksort
- Other sorts you might want to look at:
- Radix Sort
- Shell Sort
-Tim Sort
-Heap Sort (we will cover heaps later in the course)
- Bogosort
- Sort you don't want to look at: BubbleSort

Sorting!

- In general, sorting consists of putting elements into a particular order, most often the order is numerical or lexicographical (i.e., alphabetic).
- In order for a list to be sorted, it must:
- be in nondecreasing order (each element must be no smaller than the previous element)
- be a permutation of the input

Sorting!

- Sorting is a well-researched subject, although new algorithms do arise (see Timsort, from 2002)
- Fundamentally, comparison sorts at best have a complexity of $\mathbf{O}(\mathbf{n} \boldsymbol{\operatorname { l o g }} \mathbf{n})$.
- We also need to consider the space complexity: some sorts can be done in place, meaning the sorting does not take extra memory. This can be an important factor when choosing a sorting algorithm!

(must sort)

Sorting!

- In-place sorting can be "stable" or "unstable": a stable sort retains the order of elements with the same key, from the original unsorted list to the final, sorted, list
- There are some phenomenal online sorting demonstrations: see the "Sorting Algorithm Animations" website:

- http://www.sorting-algorithms.com, or the animation site at: http:// www.cs.usfca.edu/~galles/visualization/ComparisonSort.html or the cool "15 sorts in 6 minutes" video on YouTube: https://www.youtube.com/ watch? $v=k P R A O W 1 \mathrm{kECg}$

Sorts

- There are many, many different ways to sort elements in a list. We will look at the following:

Insertion Sort Selection Sort
Merge Sort
Quicksort

Sorts

Insertion Sort
Selection Sort Merge Sort
Quicksort

Insertion Sort

Insertion sort: orders a list of values by repetitively inserting a particular value into a sorted subset of the list

More specifically:

- consider the first item to be a sorted sublist of length 1
- insert second item into sorted sublist, shifting first item if needed
- insert third item into sorted sublist, shifting items 1-2 as needed
- ...
- repeat until all values have been inserted into their proper positions

Insertion Sort

9	5	10	8	12	11	14	2	22	43						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$	$[13]$	$[14]$	$[15]$

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

in place already (i.e., already bigger than 9)

5	9	10	8	12	11	14	2	22	43						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$	$[13]$	$[14]$	$[15]$

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

				$8<10$, so 10 moves right. Then $8<9$, so move 9 right											
5	9	10		12	11	14	2	22	43						
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

in place already (i.e., already bigger than 10)

5	8	9	10	12	11	14	2	22	43						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$	$[13]$	$[14]$	$[15]$

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

in place already (i.e., already bigger than 12)

$\mathbf{5}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{2}$	$\mathbf{2 2}$	$\mathbf{4 3}$						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$	$[13]$	$[14]$	$[15]$

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

Algorithm:

- iterate through the list (starting with the second element)
- at each element, shuffle the neighbors below that element up until the proper place is found for the element, and place it there.

Insertion Sort

Complexity:
Worst performance: $O\left(n^{2}\right)$ (why? -- see extra slide!)
Best performance: $\mathrm{O}(\mathrm{n})$
-Average performance: O(n²) (but very fast for small arrays!)
-Worst case space complexity: $\mathrm{O}(\mathrm{n})$ total (plus one for swapping)

Insertion Sort Code

// Rearranges the elements of v into sorted order. void insertionSort(Vector<int>\& v) \{
for (int i = 1; $i<v . s i z e() ; ~ i++) ~\{$
int temp = vii];
// slide elements right to make room for vii]
int $j=1$;
while (j >= 1 \&\& v[j - 1] > temp) \{
$v[j]=v[j-1] ;$
j--;
\}
$\mathrm{v}[\mathrm{j}]=$ temp;
\}

Sorts

Insertion Sort
Selection Sort
Merge Sort
Quicksort

Selection Sort

9	5	10	8	12	11	14	2	22	43						
$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$	$[13]$	$[14]$	$[15]$

- Selection Sort is another in-place sort that has a simple algorithm:
- Find the smallest item in the list, and exchange it with the left-most unsorted element.
- Repeat the process from the first unsorted element.
- See animation at: http://www.cs.usfca.edu/~galles/visualization/ ComparisonSort.html

Selection Sort

| 9 | 5 | 10 | 8 | 12 | 11 | 14 | 2 | 22 | 43 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- Algorithm
- Find the smallest item in the list, and exchange it with the leftmost unsorted element.
- Repeat the process from the first unsorted element.
- Selection sort is particularly slow, because it needs to go through the entire list each time to find the smallest item.

Selection Sort

- Algorithm
- Find the smallest item in the list, and exchange it with the leftmost unsorted element.
- Repeat the process from the first unsorted element.
- Selection sort is particularly slow, because it needs to go through the entire list each time to find the smallest item.

Selection Sort

(no swap necessary)

- Algorithm
- Find the smallest item in the list, and exchange it with the leftmost unsorted element.
- Repeat the process from the first unsorted element.
- Selection sort is particularly slow, because it needs to go through the entire list each time to find the smallest item.

Selection Sort

- Complexity:
- Worst performance: $O\left(n^{2}\right)$
- Best performance: $O\left(n^{2}\right)$
- Average performance: O(n²)
- Worst case space complexity: $\mathrm{O}(\mathrm{n})$ total (plus one for swapping)

Selection Sort Code

```
// Rearranges elements of v into sorted order
// using selection sort algorithm
void selectionSort(Vector<int>& v) {
    for (int i = 0; i < v.size() - 1; i++) {
        // find index of smallest remaining value
        int min = i;
        for (int j = i + 1; j < v.size(); j++) {
        if (v[j] < v[min]) {
        min = j;
        }
        }
        // swap smallest value to proper place, v[i]
        if (i != min) {
        int temp = v[i];
        v[i] = v[min];
        v[min] = temp;
        }
    }
}
```


Sorts

Insertion Sort
Selection Sort Merge Sort
Quicksort

Merge Sort

- Merge Sort is another comparison-based sorting algorithm and it is a divide-and-conquer sort.
- Merge Sort can be coded recursively
- In essence, you are merging sorted lists, e.g.,
- $\mathrm{L} 1=\{3,5,11\} \quad \mathrm{L} 2=\{1,8,10\}$
- merge(L1,L2)=\{1,3,5,8,10,11\}

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Merging two sorted lists is easy:

Merge Sort

- Full algorithm:
- Divide the unsorted list into n sublists, each containing 1 element (a list of 1 element is considered sorted).
- Repeatedly merge sublists to produce new sorted sublists until there is only 1 sublist remaining. This will be the sorted list.

Merge Sort Code (Recursive!)

```
// Rearranges the elements of v into sorted order using
// the merge sort algorithm.
void mergeSort(Vector<int> &vec) {
    int n = vec.size();
    if (n <= 1) return;
    Vector<int> v1;
    Vector<int> v2;
    for (int i=0; i < n; i++) {
        if (i < n / 2) {
                v1.add(vec[i]);
        } else {
                        v2.add(vec[i]);
        }
    }
    mergeSort(v1);
    mergeSort(v2);
    vec.clear();
    merge(vec, v1, v2);
}
```


Merge Halves Code

```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
    int n1 = v1.size();
    int n2 = v2.size();
    int p1 = 0;
    int p2 = 0;
    while (p1 < n1 && p2 < n2) {
        if (v1[p1] < v2[p2]) {
        vec.add(v1[p1++]);
        } else {
        vec.add(v2[p2++]);
        }
    }
    while (p1 < n1) {
        vec.add(v1[p1++]);
    }
    while (p2 < n2) {
        vec.add(v2[p2++]);
    }
}
```

Merge Sort: Full Example

\section*{| 99 | 6 | 86 | 15 | 58 | 35 | 86 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Merge Sort: Full Example

\section*{| 99 | 6 | 86 | 15 | 58 | 35 | 86 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| 99 | 6 | 86 | 15 |
| :--- | :--- | :--- | :--- |
 | 58 | 35 | 86 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- |}

Merge Sort: Full Example

\section*{| 99 | 6 | 86 | 15 | 58 | 35 | 86 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

99	6	86	15		58 35 86 4 0 99 6 86 15 58	35		86	4	0

Merge Sort: Full Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 99 & 6 & 86 & 15 & 58 & 35 & 86 & 4 & 0 \\
\hline
\end{array}
$$

99	6	86	15

58	35	86	4	0

99	6

86	15

| $58 \quad 35$ |
| :--- | :--- |

| 864 | 0 |
| :--- | :--- | :--- |

99	6	86	15

$58 \quad 35$
86
40

Merge Sort: Full Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l}
\hline 99 & 6 & 86 & 15 & 58 & 35 & 86 & 4 & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline 99 & 6 & 86 & 15 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l}
\hline 58 & 35 & 86 & 4 & 0 \\
\hline
\end{array}
$$

99	6	86	15

$58 \quad 35$
86

Merge Sort: Full Example

Merge Sort: Full Example

Merge as you go back up

Merge Sort: Full Example

5835
86
04

Merge as you go back up 4

Merge Sort: Full Example

Merge Sort: Space Complexity

$\begin{array}{llllllll}0 & 4 & 6 & 15 & 35 & 58 & 86 & 86 \\ 99\end{array}$

- Merge Sort can be completed in place, but
- It takes more time because elements may have to be shifted often
- It can also use "double storage" with a temporary array.
- This is fast, because no elements need to be shifted
- It takes double the memory, which makes it inefficient for in-memory sorts.

Merge Sort: Time Complexity

$\begin{array}{lllllllllll}0 & 4 & 6 & 15 & 35 & 58 & 86 & 86 & 99\end{array}$

- The Double Memory merge sort has a worst-case time complexity of $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ (this is great!)
- Best case is also O(n log n)
- Average case is $\mathbf{O}(\mathbf{n} \log \mathbf{n})$
- Note: We would like you to understand this analysis (and know the outcomes above), but it is not something we will expect you to reinvent on the midterm.

Is our Merge Sort "stable"?

- A "stable sort" keeps the original order of the same values in the same order. E.g.,

$\mathbf{9 9}$	$\mathbf{6}$	$\mathbf{8 6}$	$\mathbf{1 5}$	$\mathbf{5 8}$	$\mathbf{3 5}$	$\mathbf{8 6}$	$\mathbf{4}$	$\mathbf{0}$		
this 86						will end up ahead of this 86				

Is our Merge Sort "stable"?

- A "stable sort" keeps the original order of the same values in the same order. E.g.,

Who cares? It's just a number!

Is our Merge Sort "stable"?

What if we were sorting linked vectors? What if we first sorted by alpha below, then by num...

num	$\mathbf{9 9}$	$\mathbf{6}$	$\mathbf{8 6}$	$\mathbf{1 5}$	$\mathbf{5 8}$	$\mathbf{3 5}$	$\mathbf{8 6}$	$\mathbf{4}$	$\mathbf{0}$
alpha	A	B	C	D	E	F	G	H	I

We might care! If we are sorting first names with last names, maybe we want all the last names to be in order.

num	O	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 5}$	$\mathbf{3 5}$	$\mathbf{5 8}$	$\mathbf{8 6}$	$\mathbf{8 6}$	$\mathbf{9 9}$
alpha	I	H	B	D	F	E	C	G	A

num	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 5}$	$\mathbf{3 5}$	$\mathbf{5 8}$	$\mathbf{8 6}$	$\mathbf{8 6}$	$\mathbf{9 9}$
alpha	I	H	B	D	F	E	G	C	A

Is our Merge Sort "stable"?

```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
    int n1 = v1.size();
    int n2 = v2.size();
    int p1 = 0;
    int p2 = 0;
    while (p1 < n1 && p2 < n2) {
        if (v1[p1] < v2[p2]) {
        vec.add(v1[p1++]);
        } else {
        vec.add(v2[p2++]);
        }
    }
    while (p1 < n1) {
        vec.add(v1[p1++]);
    }
    while (p2 < n2) {
        vec.add(v2[p2++]);
    }
}
```


Is our Merge Sort "stable"?

```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
    int n1 = v1.size();
    int n2 = v2.size();
    int p1 = 0;
    int p2 = 0;
    while (p1 < n1 && p2 < n2) {
        if (v1[p1] < v2[p2]) { Nope, not stable!
                vec.add(v1[p1++]);
            } else {
                vec.add(v2[p2++]);
            }
    }
    while (p1 < n1) {
        vec.add(v1[p1++]);
    }
    while (p2 < n2) {
        vec.add(v2[p2++]);
    }
}
```


Is our Merge Sort "stable"?

```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted, and vec is empty
void merge(Vector<int> &vec, Vector<int> &v1, Vector<int> &v2) {
    int n1 = v1.size();
    int n2 = v2.size();
    int p1 = 0;
    int p2 = 0;
    while (p1 < n1 && p2 < n2) {
        if (v1[p1] <= v2[p2]) {
                vec.add(v1[p1++]);
        } else {
                vec.add(v2[p2++]);
            }
    }
    while (p1 < n1) {
        vec.add(v1[p1++]);
    }
    while (p2 < n2) {
        vec.add(v2[p2++]);
    }
}
```


Sorts

Insertion Sort
Selection Sort Merge Sort Quicksort

Quicksort

- Quicksort is a sorting algorithm that is often faster than most other types of sorts.
- However, although it has an average O(n log n) time complexity, it also has a worst-case $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time complexity, though this rarely occurs.

Quicksort

- Quicksort is another divide-and-conquer algorithm.
- The basic idea is to divide a list into two smaller sub-lists: the low elements and the high elements. Then, the algorithm can recursively sort the sub-lists.

Quicksort Algorithm

- Pick an element, called a pivot, from the list
- Reorder the list so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it. After this partitioning, the pivot is in its final position. This is called the partition operation.
- Recursively apply the above steps to the sub-list of elements with smaller values and separately to the sub-list of elements with greater values.
- The base case of the recursion is for lists of $\mathbf{0}$ or $\mathbf{1}$ elements, which do not need to be sorted.

Quicksort Algorithm

- We have two ways to perform quicksort:
- The naive algorithm: create new lists for each subsort, leading to an overhead of n additional memory.
- The in-place algorithm, which swaps elements.

Quicksort Algorithm: Naive

pivot (6)

6	5	9	12	3	4

Quicksort Algorithm: Naive

pivot (6)

6	5	9	12	3	4

<6

5	$\mathbf{3}$	$\mathbf{4}$

\[

\]

Partition into two new lists -- less than the pivot on the left, and greater than the pivot on the right.
Even if all elements go into one list, that was just a poor partition.

Quicksort Algorithm: Naive

Keep partitioning the sub-lists

Quicksort Algorithm: Naive

\section*{| 6 | 5 | 9 | 12 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

\section*{| 5 | 3 | 4 |
| :--- | :--- | :--- |
 6
 | 9 | 12 |
| :--- | :--- |}

Quicksort Algorithm: Naive

$$
\begin{array}{l|l|l|l|l|l}
\hline 6 & 5 & 9 & 12 & 3 & 4 \\
\hline
\end{array}
$$

Quicksort Algorithm: Naive Code

```
Vector<int> naiveQuickSort(Vector<int> v) { // not passed by reference!
    // base case: list of 0 or 1
    if (v.size() < 2) {
        return v;
    }
    int pivot = v[0]; // choose pivot to be left-most element
    // create two new vectors to partition into
    Vector<int> left, right;
    // put all elements <= pivot into left, and all elements > pivot into right
    for (int i=1; i<v.size(); i++) {
        if (v[i] <= pivot) {
            left.add(v[i]);
        }
        else {
            right.add(v[i]);
        }
    }
    left = naiveQuickSortHelper(left); // recursively handle the left
    right = naiveQuickSortHelper(right); // recursively handle the right
    left.add(pivot); // put the pivot at the end of the left
    return left + right; // return the combination of left and right
}
```


Quicksort Algorithm: In-Place

0	1	2	3	4	5	6	7
56	25	37	58	95	19	73	30

In-place, recursive algorithm:

```
    int quickSort(Vector<int> &v, int start, int finish);
```

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the pivot with the element where the left/right cross, unless it happens to be the pivot.
This is best described with a detailed example...

Quicksort Algorithm: In-Place

0	1	2	3	4	5	6	7
56	25	37	58	95	19	73	30

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)

- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

30 is already smaller than 56
quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7); than 56

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);
95 is greater than 56

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);
95 is greater than 56

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- Pick your pivot as the left element (might not be a good choice...)
- Traverse the list from the end (right) backwards until the value should be to the left of the pivot, or it hits the left.
- Traverse the list from the beginning (left, after pivot) forwards until the value should be to the right of the pivot, or until it hits the right.
- Swap the two elements where the left/right cross, unless the pivot is the smallest.
- Repeat the traversals until they cross, at which point you swap that element with the pivot.

Quicksort Algorithm: In-Place

quickSort(vec, 0, 7);

- The partitioning step has completed! The elements to the left of 56 are smaller, and the elements to the right are bigger!
- The partitioning step returns the "boundary" value (index 4, in this case), and we can now sort each sub-part of the vector:
quickSort(vec, 0, 3);
quickSort(vec, 4, 7);

If start is ever bigger than finish, we just return!

Quicksort Algorithm: Big-O

0	1	2	3	4	5	6	7
19	25	37	30	56	95	73	58

- Best-case time complexity: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Worst-case time complexity: $O\left(n^{2}\right)$
- Average time complexity: $O(n \log n)$
- Space complexity: naive: $O(n)$ extra, in-place: $O(\log n)$ extra (because of recursion)
- Stable?

Quicksort In-place Code

```
/*
* Rearranges the elements of v into sorted order using
* a recursive quick sort algorithm.
    */
void quicksort(Vector<int> &vec) {
    quicksort(vec, 0, vec.size() - 1);
}
void quicksort(Vector<int> &vec, int start, int finish) {
    if (start >= finish) return;
    int boundary = partition(vec, start, finish);
    quicksort(vec, start, boundary - 1);
    quicksort(vec, boundary + 1, finish);
```

\}

We need a helper function to pass along left and right.

Quicksort In-place Code: Partition

```
int partition(Vector<int> &vec, int start, int finish) {
    int pivot = vec[start];
    int lh = start + 1;
    int rh = finish;
    while (true) {
        while (lh < rh && vec[rh] >= pivot) rh--;
        while (lh < rh && vec[lh] < pivot) lh++;
        if (lh == rh) break;
        // swap
        int tmp = vec[lh];
        vec[lh] = vec[rh];
        vec[rh] = tmp;
    }
    if (vec[lh] >= pivot) return start;
    vec[start] = vec[lh];
    vec[lh] = pivot;
    return lh;
```


Recap

Sorting Big-O Cheat Sheet			
Sort	Worst Case	Best Case	Average Case
Insertion	$O\left(n^{2}\right)$	$O(n)$	$O\left(n^{2}\right)$
Selection	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Merge	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quicksort	$O\left(n^{2}\right)$	$O(n \log n)$	$O(n \log n)$

References and Advanced Reading

-References:

-http://en.wikipedia.org/wiki/Sorting_algorithm (excellent)

- http://www.sorting-algorithms.com (fantastic visualization)
- More online visualizations: http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
(excellent)
-Excellent mergesort video: https://www.youtube.com/watch?v=GCae1WNvnZM
-Excellent quicksort video: https://www.youtube.com/watch?v=XE4VP 8Y0BU
- Full quicksort trace: http://goo.gl/vOgaT5

- Advanced Reading:

- YouTube video, 15 sorts in 6 minutes: https://www.youtube.com/watch?v=kPRAOW1kECg (fun, with sound!)
- Amazing folk dance sorts: https://www.youtube.com/channel/UClqiLefbVHsOAXDAxQJH7Xw
-Radix Sort: https://en.wikipedia.org/wiki/Radix sort
-Good radix animation: https://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
-Shell Sort: https://en.wikipedia.org/wiki/Shellsort
-Bogosort: https://en.wikipedia.org/wiki/Bogosort

Extra Slides

Why is the following nested loop $O\left(n^{2}\right) ?$

```
for (int i=0; i < n; i++) {
    for (int j=i; j < n; j++) {
                // do stuff...
    }
}
```

The first time through the outer loop, there are n steps. The second time through the outer loop, there are $\mathrm{n}-1$ steps. The third time through the outer loop, there are n-2 steps.

The last time through the outer loop, there is 1 step.

Why is the following nested loop $O\left(n^{2}\right)$?

```
for (int i=0; i < n; i++) {
    for (int j=i; j < n; j++) {
        // do stuff...
    }
}
```

In other words, the number of total steps is:
$\mathrm{n}+(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+2+1=(\mathrm{n}+1) * \mathrm{n} / 2=\mathbf{n}^{2} / \mathbf{2}+\mathbf{n} / \mathbf{2}$
which, by our normal rules of simplifying Big O:
$\mathbf{n}^{2 / 2}+\mathbf{n} / \mathbf{2}=\mathbf{O}\left(\mathbf{n}^{2} / \mathbf{2}\right)=\mathbf{O}\left(\mathbf{n}^{2}\right)$

