
Wednesday, May 9, 2018

Programming Abstractions

Spring 2018

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Section 12.1

CS 106B
Lecture 17:
Implementing Vector

Hermit Crab
(Pagurus bernhardus)

Today's Topics

•Logistics
•Class Handout: http://web.stanford.edu/class/cs106b//lectures/17-
ImplementingVector/code/ClassHandout.pdf (for stack and queue implementation)

•Code for VectorInt: http://web.stanford.edu/class/cs106b//lectures/17-
ImplementingVector/code/allCodeLecture17.zip

•More information on delete
•Destructors
•Implementing the Vector class
•Header File
•Implementation
•focus on expand()

http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/ClassHandout.pdf
http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/ClassHandout.pdf
http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/ClassHandout.pdf
http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/allCodeLecture17.zip
http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/allCodeLecture17.zip
http://web.stanford.edu/class/cs106b//lectures/17-ImplementingVector/code/allCodeLecture17.zip

Assignment 5: Linked Lists and Heaps
For the next assignment, you will be implementing a data structure called a
"priority queue" which allows you to store keys and values based on the "priority"
of the key. You will be modeling a hospital emergency room: patients with a higher
priority are attended to first, even if they arrive after patients with lower priority:

For example, if the following patients arrive at the hospital in this order:
 • "Dolores" with priority 5
 • "Bernard" with priority 4
 • "Arnold" with priority 8
 • "William" with priority 5
 • "Teddy" with priority 5
 • "Ford" with priority 2
Then if you were to dequeue the patients to process them, they would come out in this order: Ford,
Bernard, Dolores, William, Teddy, Arnold.

More on part C for HW 5 later!

for Heaps

Why do we care about delete?
const int INIT_CAPACITY = 1000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo()
{
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i)
{
 return bigArray[i];
}

Why do we care about delete?
const int INIT_CAPACITY = 1000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo()
{
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i)
{
 return bigArray[i];
}

This is a lot of strings...

1MB array * (20 chars + ~30
bytes of overhead for each
string) = 50MB per class

instance

Why do we care about delete?
const int INIT_CAPACITY = 1000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo()
{
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i)
{
 return bigArray[i];
}

int main()
{
 for (int i=0;i<10000;i++){
 Demo demo;
 cout << i << ": "
 << demo.at(1234)
 << endl;
 }
 return 0;
}

Why do we care about delete?
const int INIT_CAPACITY = 1000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo()
{
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i)
{
 return bigArray[i];
}

int main()
{
 for (int i=0;i<10000;i++){
 Demo demo;
 cout << i << ": "
 << demo.at(1234)
 << endl;
 }
 return 0;
}

Let's do this 10000
times...after about 40
or so, we will use 2GB

of memory...

Why do we care about delete?
const int INIT_CAPACITY = 1000000;

class Demo {
public:
 Demo(); // constructor
 string at(int i);
private:
 string *bigArray;
};

Demo::Demo()
{
 bigArray = new string[INIT_CAPACITY];
 for (int i=0;i<INIT_CAPACITY;i++) {
 bigArray[i] = "Lalalalalalalalala!";
 }
}

string Demo::at(int i)
{
 return bigArray[i];
}

int main()
{
 for (int i=0;i<10000;i++){
 Demo demo;
 cout << i << ": "
 << demo.at(1234)
 << endl;
 }
 return 0;
}

Let's see what happens!

The VectorInt Class: Implementation

• In order to demonstrate how useful (and
necessary) dynamic memory is, let's
implement a Vector that has the following
properties:
• It can hold ints (unfortunately, it is

beyond the scope of this class to create
a Vector that can hold any type)

• It has useful Vector functions: add(),
insert(), get(), remove(),
isEmpty(), size(), << overload

• We can add as many elements as we
would like

• It cleans up its own memory

Dynamic Memory Allocation: your responsibilities

• Back to Stanford Word.
• The problem we had initially was that Stanford Word can't

just pick an array size for the number of pages, because it
doesn't know how many pages you want to write.

• But, using a dynamic array, Stanford Word can initially set
a low number of pages (say, five), and then ... what can it
do?

Expansion Analogy: Hermit Crabs

• Hermit Crabs
• Hermit crabs are interesting animals. The live in scavenged

shells that they find on the sea floor. Once in a shell, this is
their lifestyle (with a bit of poetic license):
• Grow a bit until the shell is outgrown.
1.Find another shell.
2.Move all their stuff into the other shell.
3.Leave the old shell on the sea floor.
4.Update their address with the Hermit Crab Post Office
5.Update the capacity of their new shell on their web page.

Expansion Analogy: Hermit Crabs

• Dynamic Arrays

• We can actually model what we want Microsoft Word to do
with the array for its document by the hermit crab model.

• In essence, when we run out of space in our array, we want
to allocate a new array that is bigger than our old array so we
can store the new data and keep growing. These "growable
arrays" follow a five-step expansion that mirrors the hermit
crab model (with poetic license).

• One question: if we are going to expand our array, how much
more memory do we ask for? double the amount! This is the most efficient.

Expansion Analogy: Hermit Crabs

• Dynamic Arrays
• There are five primary steps to expanding a dynamic array:
1.Create a new array with a new size (normally twice the size)
2.Copy the old array elements to the new array
3.Delete the old array (understanding what happens here is key!)
4.Point the old array variable to the new array (it is a pointer!)
5.Update the capacity variable for the array

• When do we decide to expand an array?
• When it is full. How do we know it is full? We keep track!

Expansion Analogy: Hermit Crabs

• Dynamic Arrays
• There are five primary steps to expanding a dynamic array:
1.Create a new array with a new size (normally twice the size)
2.Copy the old array elements to the new array
3.Delete the old array (understanding what happens here is key!)
4.Point the old array variable to the new array (it is a pointer!)
5.Update the capacity variable for the array

• When do we decide to expand an array?
• When it is full. How do we know it is full? We keep track!

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
1.Request space for 10 elements:

What options does the operating system have?

int *newElements = new int[capacity * 2];

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
1.Request space for 10 elements:

What options does the operating system have?

Is this an option?
No — you're
already using
the first five!

int *newElements = new int[capacity * 2];

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
1.Request space for 10 elements:

What options does the operating system have?

This is the
option the OS
has to choose.

int *newElements = new int[capacity * 2];

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
1.Request space for 10 elements:

What options does the operating system have?

This is the
option the OS
has to choose.

int *newElements = new int[capacity * 2];

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2 7

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
2.Copy:

This is the
option the OS
has to choose.

for (int i=0; i < count; i++) {
 newElements[i] = elements[i];
}

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3 5 2 8 2 7
4
5 5 2 8 2 7

elements

43
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
3.Delete the original elements: (you no longer have legitimate access to that
memory!)

This is the
option the OS
has to choose.

delete [] elements;

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5 5 2 8 2 7

elements

55
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
4.Assign elements to the new array:

This is the
option the OS
has to choose.

elements = newElements;

55
0x8f

newElements

Vector Expansion: Memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5 5 2 8 2 7

elements

55
0x7c

• Let's say that our Vector's elements pointer points to memory as in the following
diagram. capacity = 5, and count = 5 (it is full).

• To expand, we must follow our rules:
5.(Bookkeeping) update capacity:

This is the
option the OS
has to choose.

capacity *= 2;

55
0x8f

newElements

References and Advanced Reading

•References:
•Dynamic Arrays: https://en.wikipedia.org/wiki/Dynamic_array
•See the course website for full VectorInt code

•Advanced Reading:
•Vector class with templates: Read textbook, Section 14.4

https://en.wikipedia.org/wiki/Dynamic_array

