CsS 1068

| ecture 19: lrees
Monday, May 14, 2018

Programming Abstractions
Spring 2018

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Section 16.1




loday's lopics

®| Ogistics
eSee Plazza @661 for information about using a stringstream to utilize the <<
from a PatientNode.
eHow do you clear a Vector”? (or a heap?)

e|ntroduction to Trees



https://stackoverflow.com/questions/5193173/getting-cout-output-to-a-stdstring/5193203#5193203

loday's lopics

eHow do you clear a Vector? Let's find out...




loday's lopics

eHow do you clear a Vector? Let's find out... —
)

[
=

eBecause the count Is what keeps track of the number of elements in our vector,
we can simply set that variable to O, and we now have an empty vector. Yes, the
capacity Is the same, and yes, the old elements are still there, but they will get
overwritten upon further adds or inserts.




Trees

We have already seen trees In the class In the form of decision trees!

cart
- — A
art Cri cat car

Pl DNl D Nl D Nl B

T at ar t ¢t ¢cr at Cct ca ar cr ca
Y A A N N A N A N A N A VA A AV AVEVAN

tr ta ra tr { C ' C ta T C ac ra rc ac




Trees

You've coded trees for recursive assignments!

<Sg>

o D

<np>

Y

<Vp>

<pn>

Fred

N

<tv>

A 4

honored

<np-~>
¢ —>
<dp> <adjp> <n>
A Sa
<adj> <adjp>
v
<adj>
v v \4
the green wonderful child

Random expansion from sentence. txt grammar for symbol "<s>"




©
o
©
a0
O
S
oD
T

%
D
C
O
\ -
M®
-
D
1
O
O
. -
O
%,
D
O
-
qw
O
%
D
O
_l




Trees Can Describe Websites (HTML




Trees Can Describe Programs

// Example student solution

function run() {
// move then loop

move():
// the condition 1s fixed

while (notFinished()) {
if (isPathClear()) {
move();
} else {
turnLeft();
!

// redundant
move():

isPathClear’////? —

MY

~—

run —o

@

move @
M
@
N/

move——

while

N

)

~—

MOVE

turnLeft

00000000
- -
- D

ZSOZEN0MN
R FR N
oe ;ﬁ\&. Q@ <> x
g <N\ 7

()
"
/ Q% <&

s,
s S A A\ \\
’ ~ 7 s 2\\ 3 ¥
: W N m w 4
= 4 x *
¢ | =] . 1) e
=

* This is a figure in an academic paper written by a recent CS106 student!:l. 7

~ e <’
—_sooos



Irees are inherently recursive

What is a Tree (iIn Computer Science)”

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T>, ..., Tk, WhoSse roots are connected by a
directed edge from r.

A o A is the root

OROIOIOICIOIO
)




Iree lerminology

What is a Tree (iIn Computer Science)”

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T>, ..., Tk, WhoSse roots are connected by a

directed edge from r.

A o A is the root

Fisa
child of A

E and a parent
of K,L,M

Bis a

child of A
Note: there are
N nodes and
N-1 edges




Iree lerminology

What is a Tree (iIn Computer Science)”

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T>, ..., Tk, WhoSse roots are connected by a
directed edge from r.

A iIs the root
=

A

Nodes with no
children are
called /eaves




Iree lerminology

What is a Tree (iIn Computer Science)”

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T>, ..., Tk, WhoSse roots are connected by a
directed edge from r.

A iIs the root
(a)

Nodes with the ! ! :
same parent are
siblings. Q Q




Tree lerminology

We can define a
path from a parent
to its children.

The path A-E-J-O
has a length of three
(the nhumber of edges)

(5) (F

@) (1) (0 (W) (v




Iree lerminology

The depth of a node o
Is the length from the

root. The depth of node

J is 2. The depth of the

root is O. G E e

The height of a node

Is the longest path
S N OIOIOIOI0I0
leaf. The height of

node F is 1. The height

of all leaves is O. Q G




Iree lerminology

The height of a tree
iIs the height of the
root (in this case,
the height of the tree
is 3.

ONC O

OIOIOIGIO0IO
OIO




Iree lerminology

Trees can have only one parent, and cannot have cycles




Tree Terminology Ve

Trees can have only one parent, and cannot have cycles




Iree lerminology

Trees can have only one parent, and cannot have cycles

OO Node A
N {/ has two
xx@\\ parents

Node A has two parents @ @



Iree lerminology

Trees can have only one parent, and cannot have cycles




Iree lerminology

Trees can have only one parent, and cannot have cycles

not a tree: the red edges make a cycle



How can we build trees programmatically




How can we build trees programmatically

Binary [ree;:

value




How can we build trees programmatically

Binary [ree;:

value

Linked List

value




How can we build trees programmatically

Binary [ree;:

value

Linked List

value




How can we build trees programmatically

Binary [ree;:

value




How can we build trees programmatically

Binary [ree;:

value

— 1 =l value

(7 ORD ) UN]O/P“‘-
< /oA RN
g

|

Linked List




The Most Important Slide

Binary Iree:

struct Tree {
Tree *right;

} s




We Can Have Ternary Trees (or any number, n)

struct Tree {

lernary Iree:

string value;
Tree *left;

Tree *middle;
Tree *right;




We Can Have Ternary Trees (or any number, n)

N-ary Iree:

struct Tree {
string value;
Vector<Tree *> children;

} s




Trees can be defined as elther structs or classes

struct Tree {
string value;
Tree * left;

Tree * right;

class Tree {

private:
string value;
Vector<Tree *> children;




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4 .Level-order

E

correctly

sentence.




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order 1.Do something
2.ln-order 2 Go left

3.Post-order 3.Go right
4. evel-order

E

correctly

sentence.




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order 1 Go left
2.ln-order

2.Do something
3.Post-order 3.Go right

4. evel-order

E

correctly

sentence.




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order 1 Go left

2.In-order 2.Go right
3.Post-order

4. evel-order

3.D0o something

E

correctly

sentence.




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4 .Level-order




| et's write some code to 'traverse’ the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4 .Level-order

this
-—
s
-—
==
— —
Not easy recursively...let's use a queue! should look
1. Enqueue root familiar...word
2. While queue is not empty: ladder?

dequeue node

do something with node

engueue left child of node It it exists
engueue right child of node It it exists

sentence.




| et’'s write some coge

struct Tree {
string value;
Tree * left;
Tree * right;

void preOrder (Tree * tree) {
if (tree == nullptr) return;
cout<<K tree->value <" ";
preOrder (tree->left) ;
preOrder (tree->right) ;

}

void inOrder (Tree * tree) {
if (tree == nullptr) return;
inOrder (tree->left) ;
cout<< tree->value <" ";
inOrder (tree->right) ;

}

void postOrder (Tree * tree) {
1f (tree == NULL) return;
postOrder (tree->left) ;
postOrder (tree->right) ;
cout<< tree->value << " ";

correctly

void levelOrder (Tree *tree) {
Queue<Tree *>treeQueue;
treeQueue.enqueue (tree) ;
while (!treeQueue.isEmpty()) {
Tree *node = treeQueue.dequeue() ;
cout << node->value << " ";

if (node->left '= nullptr) {
treeQueue. enqueue (node->left) ;

}
if (node->right !'= nullptr) {
treeQueue. enqueue (node->right) ;

}

—1 .

— |




References and Advanced Reading

- References:
eNttps://en.wikipedia.org/wiki/Tree (data structure)
eNttp://pages.cs.wisc.edu/~vernon/cs367/notes/8. TREES.html

- Advanced Reading:
eNttp://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html

e(Great set of tree-type questions:
eNttp://cslibrary.stanford.edu/110/Binary Trees.html



https://en.wikipedia.org/wiki/Tree_(data_structure)
http://pages.cs.wisc.edu/~vernon/cs367/notes/8.TREES.html
http://cslibrary.stanford.edu/110/BinaryTrees.html

