Lover/src/source.cpp

#include <cctype>
#include <cmath>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include '"console.h"
#include "filelib.h"
#include '"grid.h"
#include '"gwindow.h"
#include "simpio.h"
#include '"pqueue.h"
#include 'basicgraph.h"

using namespace std;
const string EGO_FILE NAME = ''348.edges"’;

/* Function: Load Ego Network
* usage: loadEgoNetwork(graph);

* Loads the contents of an edge file into the ego graph.
*/
void loadEgoNetwork(BasicGraph & graph) {
cout << '"Loading facebook ego network... " << endl;
ifstream fileStream;
openFile(fileStream, EGO_FILE NAME);
string Lline;
while(getline(fileStream, Line)) {
Vector<string> parts = stringSplit(line, " ");
string a = parts[0];
string b = parts[1];

if (lgraph.containsNode(a)) {
graph.addNode(a);

if (lgraph.containsNode(b)) {
graph.addNode(b);

graph.addEdge(a,b);
graph.addEdge(b,a);



*/
//
int

Lover/src/source.cpp

Function: Get Dispersion

usage: getDispersion(egoGraph, pointerToNode 475) -> 4996
Calculates the dispersion score of a given vertex and an

ego network. See article: http://arxiv.org/pdf/1310.6753v1.pdf

getDispersion(BasicGraph & egoGraph, Vertex * amigo) {
int count = 0;

Set<Vertex *> mutualFriends = egoGraph.getNeighbors(amigo);
for (Vertex * a : mutualFriends) {
for (Vertex *b : mutualFriends) {
if (a == b) {
continue;

3

if (legoGraph.containsEdge(a,b)) {
count++;

3

b

return count;

main() {
setConsoleFont('"courier-24");
BasicGraph egoGraph;
LoadEgoNetwork (egoGraph);

// should be 224 and 12,768 respectively
cout << "Num nodes: " << egoGraph.getNodeSet().size() << endl;
cout << "Num edges: " << egoGraph.getEdgeSet().size() << endl;

// this should be 4996
cout << "Dispersion of node 475: ';

cout << getDispersion(egoGraph, egoGraph.getNode("475")) << endl;

cout << "Calculating dispersion..." << endl;
PriorityQueue<string> loverQueue;
for(Vertex * v : egoGraph.getVertexSet()) {
int d = -getDispersion(egoGraph, v);
LoverQueue.enqueue(v->name, d);
if(loverQueue.size() % 10 == 0) {
cout << loverQueue.size() << endl;
3
3

cout << "The 10 most Likely Llovers:" << endl;
for(int i = 0; i < 10; i++) {

int priority = -loverQueue.peekPriority(Q);
string name = loverQueue.dequeue();
cout << name << " " << priority << endl;

b

cout << "Thanks for playing" << endl;
return 0;



