
Friday, May 25, 2018

Programming Abstractions

Spring 2018

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18.6

CS 106B
Lecture 25: Dijkstra's Algorithm
and the A* Algorithm

3

1

5 6

4

7

2

08 4

2
6

9 2
3

11 4 1

5

Today's Topics

•Logistics
•YEAH hours next Tuesday.

•More on Graphs:
•Dijkstra's Algorithm
•A* Algorithm

Last time: DFS and BFS

Depth First Search: Keep searching
along a path until we need to backtrack:
not guaranteed shortest path.

Breadth First Search: Look at paths
containing neighbor of distance 1, then
neighbors of distance 2, etc., until a path
is found: guaranteed shortest path.

3

1

5 6

4

7

2

0

No Weights!

Depth First Search: Keep searching
along a path until we need to backtrack:
not guaranteed shortest path.

Breadth First Search: Look at paths
containing neighbor of distance 1, then
neighbors of distance 2, etc., until a path
is found: guaranteed shortest path.

3

1

5 6

4

7

2

0

Neither DFS or BFS dealt with weights!

8 4

2
6

9 2
3

11 4 1

5

Search Without Weights

Search without weights: What is the shortest path from A to D?

CB

DA

Search With Weights

Search without weights: What is the shortest path from A to D?

CB

DA

Shortest Path: A-D

Search With Weights

Search with weights: What is the shortest path from A to D?

CB

DA

10

5

3

12345

(Assume the numbers are distances, and we want to minimize the overall
path distance)

Search With Weights

Search with weights: What is the shortest path from A to D?

CB

DA

Shortest Path: A-B-C-D10

5

3

12345

(Assume the numbers are distances, and we want to minimize the overall
path distance)

Search With Weights

Search with weights: What is the shortest path from A to D?

CB

DA

10

5

3

12345

Our BFS would break! The "shortest" path with weights depends
on the weight!

Shortest Path: A-B-C-D

(Assume the numbers are distances, and we want to minimize the overall
path distance)

BFS without weights...

If we use BFS to find the path (disregarding weights), we would use a
queue to enqueue each path.

CB

DA

10

5

3

12345

Dijkstra's Algorithm

A different algorithm, called "Dijstra's Algorithm" (after the computer
scientist Edsger Dijkstra) uses a priority queue to enqueue each path.

CB

DA

10

5

3

12345

Breadth First Search

CB

DA

10

5

3

12345

bfs from v1 to v2:
 create a queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 if v is the end vertex, we can stop.
 for each unvisited neighbor of v:
 make new path with v's neighbor as last
 element
 enqueue new path onto q

Dijkstra's Algorithm

CB

DA

10

5

3

12345

dijkstra’s from v1 to v2:
 create a priority queue of paths (a vector), q
 q.enqueue(v1 path)
 while q is not empty and v2 is not yet visited:
 path = q.dequeue()
 v = last element in path
 mark v as visited
 if v is the end vertex, we can stop.
 for each unvisited neighbor of v:
 make new path with v's neighbor as last
 element
 enqueue new path onto q

Dijkstra's Algorithm

CB

DA

10

5

3

12345

Dijkstra's algorithm is what we call a "greedy" algorithm.

This means that the algorithm always takes the path that
is best at the given time -- e.g., starting from A, you
would prioritize the path from A-B (10) over the path
from A-D (12345). This is why we use a priority queue,
because the prioritization is handled with a priority
queue.

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: A

Total Cost: 0

priority
queue:

Vector<Vertex *> startPath
startPath.add(A,0)
pq.enqueue(startPath)

Visited Set: (empty)

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: AB AD

Total Cost: 6 3

priority
queue:

in while loop:
 curPath = pq.dequeue() (path is A, priority is 0)
 v = last element in curPath (v is A)
 mark v as visited
 enqueue all unvisited neighbor paths onto q,
with updated priorities based on new edge length

Visited Set: A

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADG AB ADE

Total Cost: 12 6 4

priority
queue:

Visited Set: A, D

in while loop:
 curPath = pq.dequeue() (path is AD, priority is 3)
 v = last element in curPath (v is D)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADG ADEF ADEH AB ADEB

Total Cost: 12 11 8 6 5

priority
queue:

Visited Set: A, D, E

in while loop:
 curPath = pq.dequeue() (path is ADE, priority is 4)
 v = last element in curPath (v is E)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADG ADEF ADEBC ADEH AB

Total Cost: 12 11 8 8 6

priority
queue:

Visited Set: A, D, E, B

in while loop:
 curPath = pq.dequeue() (path is ADEB, priority is 5)
 v = last element in curPath (v is B)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADG ADEF ABC ADEBC ADEH

Total Cost: 12 11 9 8 8

priority
queue:

Visited Set: A, D, E, B

in while loop:
 curPath = pq.dequeue() (path is AB, priority is 6)
 v = last element in curPath (v is B)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEHI ADG ADEF ADEHG ABC ADEBC

Total Cost: 13 12 11 10 9 8

priority
queue:

Visited Set: A, D, E, B, H

in while loop:
 curPath = pq.dequeue() (path is ADEH, priority is 8)
 v = last element in curPath (v is H)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Note: cannot stop yet! ADEHI might not be shortest!

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEHI ADG ADEF ADEHG ADEBCF ABC

Total Cost: 13 12 11 10 9 9

priority
queue:

Visited Set: A, D, E, B, H, C

in while loop:
 curPath = pq.dequeue() (path is ADEBC, priority is 8)
 v = last element in curPath (v is C)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEHI ADG ADEF ABCF ADEHG ADEBCF

Total Cost: 13 12 11 10 10 9

priority
queue:

Visited Set: A, D, E, B, H, C

in while loop:
 curPath = pq.dequeue() (path is ABC, priority is 9)
 v = last element in curPath (v is C)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEBCFI ADEHI ADG ADEF ABCF ADEHG

Total Cost: 16 13 12 11 10 10

priority
queue:

Visited Set: A, D, E, B, H, C

in while loop:
 curPath = pq.dequeue() (path is ADEBCF, priority is 9)
 v = last element in curPath (v is F)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEBCFI ADEHI ADG ADEF ABCF

Total Cost: 16 13 12 11 10

priority
queue:

Visited Set: A, D, E, B, H, C, F, G

in while loop:
 curPath = pq.dequeue() (path is ADEHG, priority is 10)
 v = last element in curPath (v is G)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

(nothing to enqueue, as all neighbors were visited)

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ABCFI ADEBCFI ADEHI ADG ADEF

Total Cost: 17 16 13 12 11

priority
queue:

Visited Set: A, D, E, B, H, C, F, G

in while loop:
 curPath = pq.dequeue() (path is ABCF, priority is 10)
 v = last element in curPath (v is F)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEFI ABCFI ADEBCFI ADEHI ADG

Total Cost: 18 17 16 13 12

priority
queue:

Visited Set: A, D, E, B, H, C, F, G

in while loop:
 curPath = pq.dequeue() (path is ADEF, priority is 11)
 v = last element in curPath (v is F)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEFI ABCFI ADEBCFI ADEHI

Total Cost: 18 17 16 13

priority
queue:

Visited Set: A, D, E, B, H, C, F, G

in while loop:
 curPath = pq.dequeue() (path is ADG, priority is 12)
 v = last element in curPath (v is F)
 mark v as visited
 enqueue all unvisited neighbor paths onto q, with
updated priorities based on new edge length

(nothing to enqueue, as all neighbors were visited)

Dijkstra's Algorithm in Practice
• From the start vertex, explore the neighbor

nodes first, before moving to the next level
neighbors, in priority order. From A to I:

B C

D E

H G

F

I

B C

D E

H G

F

I

6

2

1

3

5

7

3

9

1

7

1

4

A

Let's look at Dijkstra from a to i:

front
Path: ADEFI ABCF ADG

Total Cost: 18 16 12

priority
queue:

in while loop:
 curPath = pq.dequeue() (path is ADEHI, priority is 13)
 v = last element in curPath (v is I)
 Stop! We've found the shortest path!
 ADEHI

Visited Set: A, D, E, B, H, C, F, G

Who Was Edsgar Dijkstra?

History of Computing Tidbit: Edsger Dijkstra
• The Dutch academic Edsger Dijkstra was another

giant in the field of computer science.
• He was one of the first scientists to call himself a

"programmer" (and he almost couldn't get married
because of it!)

• He started out with a degree in Theoretical Physics,
but became enthralled with computers in the early
1950s.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#Early_years
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#Early_years

Who Was Edsgar Dijkstra?

Edsger Dijkstra
• Dijkstra was immensely influential in many fields of

computing: compilers, operating systems, concurrent
programming, software engineering, programming
languages, algorithm design, and teaching (among
others!)

• It would be hard to pin down what he is most
famous for because he has influenced so much CS.

Goto Considered Harmful
Edsger Dijkstra
• Dijkstra was also

influential in making
programming more
structured -- he wrote a
seminal paper titled, "Goto
Considered Harmful" where
he lambasted the idea of
the "goto" statement
(which exists in C++ --
you will rarely, if ever,
use it!)

Other Cool Dijkstra Facts

Other Reasons Dijkstra is cool:
• Might actually be Walter White
• Has the letters "ijk" adjacent in his name

(is that why we use i,j,k in our loops??)
• The Edsgar Dijkstra font! His early papers

were hand-written, and he had beautiful
handwriting. This font is the "Edsger
Dijkstra" font!

Dijkstra's is great, but we can do better!
If we want to travel from Stanford to
San Francisco, Dijkstra's algorithm will
look at path distances around
Stanford. But, we know something
about how to get to San Francisco --
we know that we generally need to go
Northwest from Stanford.

This is more information! Let's not only
prioritize by weights, but also give
some priority to the direction we
want to go. E.g., we will add more
information based on a heuristic,
which could be direction in the
case of a street map.

!35

Let's look at Dijkstra where each edge has cost 1

!36

Dijkstra where each edge has cost 1

!37

Dijkstra where each edge has cost 1

!38

1?
1? 1?

1?

Dijkstra where each edge has cost 1

!39

1?
1? 1?

1?

Dijkstra where each edge has cost 1

!40

1?
1? 1?

1

Dijkstra where each edge has cost 1

!41

1?
1? 1?

12? 2?
2?

Dijkstra where each edge has cost 1

!42

1?
1? 1?

12? 2?
2?

Dijkstra where each edge has cost 1

!43

1?
1 1?

12? 2?
2?

Dijkstra where each edge has cost 1

!44

1?
1 1?

12? 2?
2?

2?
2?

Dijkstra where each edge has cost 1

!45

1?
1 1?

12? 2?
2?

2?
2?

Dijkstra where each edge has cost 1

!46

1
1 1?

12? 2?
2?

2?
2?

Dijkstra where each edge has cost 1

!47

1
1 1?

12? 2?
2?

2?
2?

2?
2?

Dijkstra where each edge has cost 1

!48

1
1 1

12? 2?
2?

2?
2?

2?
2?

Dijkstra where each edge has cost 1

!49

1
1 1

12? 2?
2?

2?
2?

2?
2?

2?

Dijkstra where each edge has cost 1

!50

1
1 1

12? 2?
2?

2?
2?

2?
2

2?

Dijkstra where each edge has cost 1

!51

1
1 1

12? 2?
2?

2?
2?

2?
2

2?

3?
3?

Dijkstra where each edge has cost 1

!52

1
1 1

12? 2
2?

2?
2?

2?
2

2?

3?
3?

Dijkstra where each edge has cost 1

!53

1
1 1

12? 2
2?

2?
2?

2?
2

2?

3?
3?

3?
3?

Dijkstra where each edge has cost 1

!54

1
1 1

12? 2
2?

2?
2?

2?
2

2

3?
3?

3?
3?

Dijkstra where each edge has cost 1

!55

1
1 1

12? 2
2?

2?
2?

2?
2

2

3?
3?

3?
3?

3?

Dijkstra where each edge has cost 1

!56

1
1 1

12 2
2?

2?
2?

2?
2

2

3?
3?

3?
3?

3?

Dijkstra where each edge has cost 1

!57

1
1 1

12 2
2?

2?
2?

2?
2

2

3?
3?

3?
3?

3?
3?

3?

Dijkstra where each edge has cost 1

!58

1
1 1

12 2

2?
2?

2?
2

2

3?
3?

3?
3?

3?
3?

3? 2
3?

Dijkstra where each edge has cost 1

!59

1
1 1

12 2

2?
2?

2
2

3?
3?

3?
3?

3?
3?

3? 2
3?

23?3?
3?

Dijkstra where each edge has cost 1

!60

1
1 1

12 2

2?
2

2

3?
3?

3?
3?

3?
3?

3? 2
3?

23?3?
3? 2

3?

Dijkstra where each edge has cost 1

!61

1
1 1

12 2

2
2

3?
3?

3?
3?

3?
3?

3? 2
3?

23?3?
3? 2

3? 2
3?

Dijkstra where each edge has cost 1

!62

1
1 1

12 2

2
2

3?
3?

3?
3

3?
3?

3? 2
3?

23?3?
3? 2

3? 2
3?

4?
4?

Dijkstra where each edge has cost 1

!63

1
1 1

12 2

2
2

3?
3?

3

3?
3?

3? 2
3?

23?3?
3? 2

3? 2
3?

4?
4?
3 4?

Dijkstra where each edge has cost 1

!64

1
1 1

12 2

2
2

3?
3?

3

3?

3? 2
3?

23?3?
3? 2

3? 2
3?

4?
4?
3 4?3

4?
4?

Dijkstra where each edge has cost 1

!65

1
1 1

12 2

2
2

3?
3?

3

3?

3? 2
3?

2
3? 2

3? 2
3?

4?
4?
3 4?3

4?
4?
34?

4?

Dijkstra where each edge has cost 1

!66

1
1 1

12 2

2
2

3?

3

3?

3? 2
3?

2
3? 2

3? 2
3?

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

Dijkstra where each edge has cost 1

!67

1
1 1

12 2

2
2

3?

3

3?

3? 2
3?

2
2

3? 2
3?

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

Dijkstra where each edge has cost 1

!68

1
1 1

12 2

2
2

3

3?

3? 2
3?

2
2

3? 2
3?

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?

Dijkstra where each edge has cost 1

!69

1
1 1

12 2

2
2

3

3?

3? 2
3?

2
2

2
3?

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?
3

4?

Dijkstra where each edge has cost 1

!70

1
1 1

12 2

2
2

3

3?

3? 2
3?

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?
3

4? 3
4?

Dijkstra where each edge has cost 1

!71

1
1 1

12 2

2
2

3

3?

2
3?

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?
3

4? 3
4?

3
4?

Dijkstra where each edge has cost 1

!72

1
1 1

12 2

2
2

3

3?

2

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?
3

4? 3
4?

3
4? 3

4?

Dijkstra where each edge has cost 1

!73

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4?

3 4?
3

4? 3
4?

3
4? 3

4?

3 4?

Dijkstra where each edge has cost 1

!74

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3 4?

4?

3
4

3 4?
3

4? 3
4?

3
4? 3

4?

3 4?

5?
5?

Dijkstra where each edge has cost 1

!75

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3

4?

3
4

3 4?
3

4? 3
4?

3
4? 3

4?

3 4?

5?
5?

4
5?

5?

Dijkstra where each edge has cost 1

!76

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3

4?

3
4

3 4?
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

Dijkstra where each edge has cost 1

!77

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

4?
4?
34?

4?
3

4?

3
4

3
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

Dijkstra where each edge has cost 1

!78

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?34?

34?
4?

3
4?

3
4

3
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

Dijkstra where each edge has cost 1

!79

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?34?

34?

3
4?

3
4

3
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?

Dijkstra where each edge has cost 1

!80

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?34?

3

3
4?

3
4

3
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5?

Dijkstra where each edge has cost 1

!81

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

3

3
4?

3
4

3
3

4? 3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

Dijkstra where each edge has cost 1

!82

1
1 1

12 2

2
2

32

2
2

2

4?
4?
3 4?3

3

3
4?

3
4

3
3

3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

Dijkstra where each edge has cost 1

!83

1
1 1

12 2

2
2

32

2
2

2

4?
4?
33

3

3
4?

3
4

3
3

3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

Dijkstra where each edge has cost 1

!84

1
1 1

12 2

2
2

32

2
2

2

4?
33

3

3
4?

3
4

3
3

3
4?

3
4? 3

4?

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?

Dijkstra where each edge has cost 1

!85

1
1 1

12 2

2
2

32

2
2

2

4?
33

3

3
4?

3
4

3
3

3
4?

3
4? 3

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

Dijkstra where each edge has cost 1

!86

1
1 1

12 2

2
2

32

2
2

2

4?
33

3

3
4?

3
4

3
3

3
4?

3
3

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

4

Dijkstra where each edge has cost 1

!87

1
1 1

12 2

2
2

32

2
2

2

33
3

3
4?

3
4

3
3

3
4?

3
3

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

4
4

Dijkstra where each edge has cost 1

!88

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3
4?

3
3

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

4
4

4
5?

Dijkstra where each edge has cost 1

!89

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
5?

4
5?

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

4
4

4
5?4

Dijkstra where each edge has cost 1

!90

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
5?

4
5

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4
5?

4 5?
5?45?

4
4

4
5?4 6?

6?

Dijkstra where each edge has cost 1

!91

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
5?

4
5

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

Dijkstra where each edge has cost 1

!92

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
4
5

5?

4 5?
5?

5?

4

45?
5?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

5
6?

6?

Dijkstra where each edge has cost 1

!93

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
4
5

5?

4 5?
5?

5?

4

45?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

5
6?

6?

56?
6?

Dijkstra where each edge has cost 1

!94

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
4
5

5?

4
5?

5?

4

45?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

5
6?

6?

56?
6?

Dijkstra where each edge has cost 1

!95

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
4
5

5?

4
5?

5?

4

45?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

5
6?

6?

56?
6?

Why are we looking
in this direction?

Dijkstra where each edge has cost 1

!96

1
1 1

12 2

2
2

32

2
2

2

33
3

3
3
4

3
3

3

3
3

3

5?
4
5

5?

4
5?

5?

4

45?

45?
4

5? 4

4
5?

4

4 5?
5?45?

4
4

4
5?4 6?

6?

5 6?
6?

5
6?

6?

56?
6?

Why are we looking
in this direction?

We haven’t taken
into account the

cost from that node
to the goal

Dijkstra where each edge has cost 1

!97

s tu

Priority of the path that ends in u

priority(u) = distance(s, u)

distance(s,u) futureCost(s,u)

Dijkstra Priority

!98

s tu

Priority of the path that ends in u

priority(u) = distance(s, u) + futureCost(u, t)

*note we will revise this slightly

distance(s,u) futureCost(s,u)

Ideal Priority

!99

Rows apart

Columns apart

function h(node,goal) {
 dRows = abs(node.row – goal.row);
 dCols = abs(node.col – goal.col);
 return dRows + dCols
}

Future Cost?

!100

!101

!102

!103

1?

1? 1?

1?

!104

1?

1? 1?

1?

!105

1?

1? 1 +
4?

1?

!106

1?

1? 1 +
4?

1?

!107

1 +
6?

1? 1 +
4?

1?

!108

1 +
6?

1? 1 +
4?

1?

!109

1 +
6?

1? 1 +
4?

1 +
6?

!110

1 +
6?

1? 1 +
4?

1 +
6?

!111

1 +
6?

1 +
6?

1 +
4?

1 +
6?

!112

1 +
6?

1 +
6?

1 +
4?

1 +
6?

!113

1 +
6?

1 +
6? 1

1 +
5?

1 +
6?

1 +
6?

!114

1 +
5?

1 +
6? 1

1 +
5?

2 +
5?

2 +
3?

2 +
5?

1 +
6?

1 +
6?

!115

1 +
5?

1 +
6? 1

1 +
5?

2 +
5?

2 +
3?

2 +
5?

1 +
6?

1 +
6?

!116

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!117

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
4?

3 +
2?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!118

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
4?

3 +
2?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!119

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!120

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
3?

4 +
1?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!121

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
3?

4 +
1?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!122

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
2?

4 +
2?

4

4 +
3?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!123

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
2?

4 +
2?

4

5 +
2?

5 +
2?

5 +
0?

4 +
3?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!124

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
2?

4 +
2?

4

5 +
2?

5 +
2?

5 +
0?

4 +
3?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

!125

1 +
5?

1 +
6? 1

1 +
5?

2 +
4?

2 +
4?

2

3 +
3?

3 +
3?

3

4 +
2?

4 +
2?

4

5 +
2?

5 +
2?

4 +
3?

4 +
3?

3 +
4?

3 +
4?

2 +
5?

2 +
5?

1 +
6?

1 +
6?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

That was easy…

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

… a little too easy

!128

Lets say we have
unknown blocks

!129

s tu

Priority of the path that ends in u

priority(u) = distance(s, u) + futureCost(u, t)

*note we will revise this slightly

distance(s,u) futureCost(s,u)

Ideal Priority

!130

s tu

Priority of the path that ends in u

priority(u) = distance(s, u) + heuristic(u, t)

Underestimate of

Future cost

distance(s,u) heuristic(u,t)

A* Priority

!131

Definition: An admissible heuristic
always underestimates the true

cost.

Thus: “even in the best case scenario, this path
is still terrible…”

Admissible Heuristic

!132

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

7 +
2?

Even in the best
case, this path is still

bad

Admissible Heuristic

!133

!134

Rows apart

Columns apart

!135

function h(start,goal) {
 dRows = abs(start.row – goal.row);
 dCols = abs(start.col – goal.col);
 return dRows + dCols
}

"Manhattan" distance

!136

Make a PriorityQueue todo-list of paths
Put a path with just the start in the todo-list
While the todo-list isn’t empty
1. Take a path out of the todo-list
2. Call the last node in the path “currNode”
3. If “currNode” is the goal, you are done.
4. If you have seen currNode before, skip it.
 5. for all neighbors of currNode

 Make a newPath = path + neighbor
 Add the new path to the todo-list
 Priority = pathLength

Recall Dijkstra...

!137

Make a PriorityQueue todo-list of paths
Put a path with just the start in the todo-list
While the todo-list isn’t empty
1. Take a path out of the todo-list
2. Call the last node in the path “currNode”
3. If “currNode” is the goal, you are done.
4. If you have seen currNode before, skip it.
 5. for all neighbors of currNode

 Make a newPath = path + neighbor
 Add the new path to the todo-list
 Priority = pathLength + h(neighbor, goal)

A Star

!138

Make a PriorityQueue todo-list of paths
Put a path with just the start in the todo-list
While the todo-list isn’t empty
1. Take a path out of the todo-list
2. Call the last node in the path “currNode”
3. If “currNode” is the goal, you are done.
4. If you have seen currNode before, skip it.
 5. for all neighbors of currNode

 Make a newPath = path + neighbor
 Add the new path to the todo-list
 Priority = pathLength + h(neighbor, goal)

What is the priority of the start
path?

A Star

!139

Make a PriorityQueue todo-list of paths
Put a path with just the start in the todo-list
While the todo-list isn’t empty
1. Take a path out of the todo-list
2. Call the last node in the path “currNode”
3. If “currNode” is the goal, you are done.
4. If you have seen currNode before, skip it.
 5. for all neighbors of currNode

 Make a newPath = path + neighbor
 Add the new path to the todo-list
 Priority = pathLength + h(neighbor, goal)

What is the priority of the start
path?
h(start, goal)

A Star

!140

!141

!142

!143

1 +
6?

1 +
6?

1 +
4?

1 +
6?

!144

1 +
6?

1 +
6? 1

1 +
6?

!145

1 +
6?

1 +
6? 1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

!146

1 +
6?

1 +
6? 1

1 +
6?

2 +
5?

2
2 +
5?

!147

1 +
6?

1 +
6? 1

1 +
6?

2 +
5?

2
2 +
5?

3 +
4?

3 +
4?

!148

1 +
6?

1
1 +
6?

2 +
5?

2
2 +
5?

3 +
4?

3 +
4?

1

!149

1 +
6?

1
1 +
6?

2 +
5?

2
2 +
5?

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7?

!150

1 +
6?

1
1 +
6?

2 +
5?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

!151

1 +
6?

1
1 +
6?

2 +
5?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

!152

1 +
6?

1
1 +
6?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

!153

1 +
6?

1
1 +
6?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

!154

1
1 +
6?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

!155

1
1 +
6?

2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

!156

1 2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1

!157

1 2

3 +
4?

3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

!158

1 2
3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

!159

1 2
3 +
4?

1

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

4 +
5?

!160

1 21

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

4 +
5?

3

!161

1 21

2 +
7?

2 +
7?

2 +
7? 2

3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

4 +
5?

3
4 +
5?

!162

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

4 +
5?

3
4 +
5?

2

!163

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

2 +
7?

1
2 +
7?

3

4 +
5?

3
4 +
5?

23 +
8?

3 +
8?

!164

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1
2 +
7?

3

4 +
5?

3
4 +
5?

23 +
8?

3 +
8?

2

!165

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1
2 +
7?

3

4 +
5?

3
4 +
5?

23 +
8?

3 +
8?

23 +
8?

3 +
8?

!166

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1
2 +
7?

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4

!167

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1
2 +
7?

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

!168

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2

!169

1 21

2 +
7?

2 +
7?

2
3 +
6?

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

!170

1 21

2 +
7?

2 +
7?

2

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3

!171

1 21

2 +
7?

2 +
7?

2

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

!172

1 21

2 +
7?

2

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

!173

1 21

2 +
7?

2

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

!174

1 21

2

2

3 +
6?

1

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

!175

1 21

2

21

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

!176

1 21

2

21

1

3

4 +
5?

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

!177

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

!178

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

!179

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

5

!180

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

5
6 +
5?

6 +
3?

!181

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

5
6 +
5?

6

!182

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

7 +
2?

!183

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

7 +
2?

5

!184

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

7 +
2?

5

6 +
5?

6 +
3?

!185

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

5

6 +
5?

6 +
3?

7

!186

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

7 +
2?

5

6 +
5?

6 +
3?

7 8 +
1?

8 +
1?

!187

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

6 +
3?

7 8 +
1?

8 +
1?

7

!188

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

6 +
3?

7 8 +
1?

8 +
1?

7
8 +
3?

8 +
3?

!189

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

6 +
3?

7 8 +
1?
7

8 +
3?

8 +
3?

8

!190

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

6 +
3?

7 8 +
1?
7

8 +
3?

8 +
3?

8

9 +
2?

9 +
0?

!191

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

7 8 +
1?
7

8 +
3?

8 +
3?

8

9 +
2?

9 +
0?

6

!192

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

7 8 +
1?
7

8 +
3?

8 +
3?

8

7 +
2?

9 +
0?

6

7 +
4?

7 +
2?

!193

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

7 8 +
1?
7

8 +
3?

8 +
3?

8

7 +
2?

6

7 +
4?

7 +
2?

!194

1 21

2

21

1

3

32

2

42 3

2

2

3 4

5 6

5

7

7

8

6

64

4 53

3

3

3

3

3

3

5

5

64

4

4

4

4

4

4

4

4

4 55

5

5

5

5

5

5

56

6

6

6

6

6 6

6

7

7

7

78

8 7

7

7

7

7

7 8

8

8

8

8

8

8

8 9?

9?

9?

9?

9?

9?

9?

9?

What Dijkstra would have selected!

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

Why underestimate?

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved. 
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.

You only ignore paths that in the best case are
worse than your current path.

!197

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4
5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5
6 +
5?

6
7 +
4?

5

6 +
5?

7 8 +
1?
7

8 +
3?

8 +
3?

8

7 +
2?

6

7 +
4?

7 +
2?

Using our heuristic, the path from start to goal
that goes through this node is at least cost 11

!198

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
4?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
4?

5 +
6?

Imagine if we overestimate

!199

1 21

2

21

1

3

323 +
8?

3 +
8?

23 +
8?

3 +
8?

4 5 +
20?

5 +
6?

2
3 +
8?

3
4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4 5 +
20?

5 +
6?

Imagine if we overestimate

!200

s tu

priority(u) = distance(s, u) + heuristic(u, t)

Underestimate of

Future cost

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Same as Dijkstra

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will be the same or faster than
Dijkstra, and will find the shortest
path (this is the only "admissible"

heuristic for A*.

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Will only follow the best path, and
will find the best path fastest (but

requires perfect knowledge)

s tu

priority(u) = distance(s, u) + heuristic(u, t)

distance(s,u) heuristic(u,t)

More Detail on A*: Choice of Heuristic

We want to underestimate the cost of our heuristic, by why?
Let's look at the bounds of our choices:

heuristic(u,t) = 0
heuristic(u,t) = underestimate
heuristic(u,t) = perfect distance
heuristic(u,t) = overestimate

Won't necessarily find
shortest path (but might run

even faster)

Definition: An admissible heuristic always
underestimates the true cost.

Admissible Heuristic

https://media.giphy.com/media/GEPHf81p4svkI/giphy.gif

https://media.giphy.com/media/GEPHf81p4svkI/giphy.gif

Why doesn't Google Maps Pre-Compute Directions?

• How many nodes are in the Google Maps graph?
• About 75 million

• How many sets of directions would they need to
generate?
• (roughly) N2
• How long would that take?

• 6 x 1015 seconds
• Or... 190 million years

What Heuristics Could Google Maps Use?

• As the crow flies
• Calculate the straight-line distance from A to B,

and divide by the speed on the fastest highway
• Landmark heuristic

• Find the distance from A and B to a landmark,
calculate the difference (distance < abs(A - B))

• All of these and more?
• You can use multiple heuristics and choose the

max

Extra Slides

