
Wednesday, May 30, 2018

Programming Abstractions

Spring 2018

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 18

CS 106B
Lecture 25: Graphs II

Today's Topics

•Logistics:
•Final review session will be early next week.
•If you need accommodations for the final exam, let Chris and Nick know now.
•The Final will be using BlueBook — you'll need 3 hours of battery life, or find an
outlet (we will try to provide enough outlets for those who need it)

•Real Graphs:
•Internet routers and traceroute

•Topological Sort
•Minimum Spanning Trees
•Kruskal's algorithm

Real Graphs!
I received some feedback from last quarter that said,

❝I would give more examples of how graphs are used, or, in general, give a
wider variety of examples of applications to the methods being used. I think it
would be interesting to give examples of how certain topics can be used in
cross-sections of CS and other majors/departments.❞

Let's dig a bit deeper into how the Internet is a real graph by analyzing internet
routers, or:

How does a message get sent from your computer to
another computer on the Internet, say in Australia?

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Computers connected through routers
your computer

computer in Australia

The Internet: Let's simplify a bit
your computer

computer in
Australia

A

B

C

D

E

F

The destination computer has a
name and an IP address, like
this:
www.engineering.unsw.edu.au
IP address: 149.171.158.109

The first number denotes the
"network address" and routers
continually pass around
information about how many
"hops" they think it will take for
them to get to all the networks.
E.g., for router C: router hops

A 2
B 1
C -
D 1
E 2
F 2

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

Each router knows its neighbors,
and it has a copy of its neighbors'
tables. So, B would have the
following tables:

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose?

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

The Internet: Let's simplify a bit
your computer

A

B

C

D

E

F

If B wants to connect to F, it
connects through its neighbor
that reports the shortest path to F.
Which router would it choose? D.

router hops
A 2
B 1
C -
D 1
E 2
F 2

router hops
A 2
B 1
C 1
D -
E 1
F 1

C D

router hops
A -
B 1
C 3
D 2
E 3
F 3

A

Traceroute
We can use a program called "traceroute" to tell us the path

between our computer and a different computer:
traceroute -I -e www.engineering.unsw.edu.au

Traceroute: Stanford Hops
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
 2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
 3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
 4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
 5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
 8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
 9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

Traceroute: CENIC

The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit
corporation formed in 1996 to provide high-performance, high-bandwidth networking services
to California universities and research institutions (source: Wikipedia)

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
 2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
 3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
 4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
 5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
 8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
 9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

https://en.wikipedia.org/wiki/California

Traceroute: Pacificwave (Seattle)

Pass Internet traffic directly with other major national and international
networks, including U.S. federal agencies and many Pacific Rim R&E
networks (source: http://www.pnwgp.net/services/pacific-wave-peering-
exchange/)

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
 2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
 3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
 4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
 5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
 8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
 9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

http://www.pnwgp.net/services/pacific-wave-peering-exchange/
http://www.pnwgp.net/services/pacific-wave-peering-exchange/

Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com

http://www.submarinecablemap.com

Traceroute: Australia
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
 2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
 3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
 4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
 5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
 8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
 9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
 1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
 2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
 3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
 4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
 5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
 6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
 7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
 8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
 9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

Traceroute: University of New South Wales

161 milliseconds to get to the final computer

Other Real Life Uses for Graphs
• Amazon.com -- Product relationships are graph-based

• What product might this be related to?

Other Real Life Uses for Graphs

Other Real Life Uses for Graphs
• Web page searching (discussed last week -- Wikipedia path to Philosophy)
• Google Maps (Trailblazer!)

Other Real Life Uses for Graphs
• Routing circuits:

Other Real Life Uses for Graphs
• Scheduling work based on dependencies (e.g., when doing laundry, the washer must finish

before the dryer, and before folding) -- this is called a "topological sort")

a e h f cb g k d

Other Real Life Uses for Graphs
• The "Oracle of Bacon": https://oracleofbacon.org (just graph searching!)

https://oracleofbacon.org

Other Real Life Uses for Graphs
• Telecommunications: find the least expensive way to lay out a set of cables for a telephone or

cable TV system ("a Minimum Spanning Tree")

Spanning Trees and Minimum Spanning Trees
Definition: A Spanning Tree (ST) of a connected undirected weighted graph G is a subgraph
of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A
Minimum Spanning Tree (MST) of G is a ST of G that has the smallest total weight among
the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree

•Kruskal's	algorithm:	Finds	a	MST	in	a	given	graph.	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue	based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected	to	one	another, 
	 	 add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

Kruskal's Algorithm to find a Minimum Spanning Tree

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{a:1,	b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{b:2,	c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{c:3,	d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{d:4,	e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{e:5,	f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{f:6,	g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{g:7,	h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{h:8,	i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{i:9,	j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{j:10,	k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{k:11,	l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{l:12,	m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{m:13,	n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{n:14,	o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{o:15,	p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{p:16,	q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{q:17,	r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{r:18}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• In	what	order	would	Kruskal's	algorithm	visit	the	edges 
in	the	graph	below?		What	MST	would	it	produce?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 

				based	on	their	weight	(cost).	
	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected, 

	 				add	that	edge	into	the	graph.	
		 Otherwise,	skip	the	edge.	

pq	=	{}

a:1 b:2
c:3

d:4

e:5

f:6

g:7

h:8

i:9
j:10

k:11

l:12

m:13

n:14

o:15

p:16q:17

r:18

Kruskal Example

• Kruskal's	algorithm	would	output	the	following	MST:	
– {a,	b,	c,	d,	f,	h,	i,	k,	p}	

• The	MST's	total	cost	is:	
	1+2+3+4+6+8+9+11+16	=	60

a:1 b:2
c:3

d:4

f:6

h:8

i:9

k:11

p:16

Kruskal Example

• What	data	structures	should	we	use	to	implement	this	algorithm?	

function	kruskal(graph):	
	Remove	all	edges	from	the	graph.	
	Place	all	edges	into	a	priority	queue 
				based	on	their	weight	(cost).	

	While	the	priority	queue	is	not	empty:	
		 Dequeue	an	edge	e	from	the	priority	queue.	
		 If	e's	endpoints	aren't	already	connected,  
	 				add	that	edge	into	the	graph.	

		 Otherwise,	skip	the	edge.

!48

• Need	some	way	to	identify	which	vertexes	are	"connected"	to	which	
other	ones	
– we	call	these	"clusters"	of	vertices	

• Also	need	an	efficient	way 
to	figure	out	which	cluster 
a	given	vertex	is	in.	

• Also	need	to	merge	clusters 
when	adding	an	edge.

References and Advanced Reading

•References:
•Minimum Spanning Tree visualization: https://visualgo.net/mst
•Kruskal's Algorithm: https://en.wikipedia.org/wiki/Kruskal's_algorithm

•Advanced Reading:
•How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/
week1/InternetWhitepaper.htm

•http://www.explainthatstuff.com/internet.html

https://visualgo.net/mst
https://en.wikipedia.org/wiki/Kruskal's_algorithm
https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
http://www.explainthatstuff.com/internet.html

