void kruskal(BasicGraph& graph, BasicGraph &mst) {

// first, copy the graph and remove the edges
// This is so we can populate it later with the mst edges
mst = graph;
mst.clearEdges();
// put each vertex into a 'cluster', initially containing only itself
Map<Vertex*, Set<Vertex*>* > clusters;
Set<Vertex*> allVertices = graph.getVertexSet();
Vector<Set<Vertex*>* > allSets; // for freeing later
for (Vertex* v : allVertices) {

Set<Vertex*>* set = new Set<Vertex*>();

set->add(v);

clusters[v] = set;

allSets.add(set);

}

// put all edges into a priority queue, sorted by weight
PriorityQueue<Edge*> pq;
Set<Edge*> allEdges = graph.getEdgeSet();
for (Edge* edge : allEdges) {
pd.enqueue (edge, edge->cost);

}

// repeatedly pull min-weight edge out of PQ and add it to MST if its
// endpoints are not already connected
Set<Edge*> mstEdges;
while (!pgq.isEmpty()) {

Edge* e = pg.dequeue();

Set<Vertex*>* setl = clusters[e->start];

Set<Vertex*>* set2 = clusters[e->finish];

if (setl != set2) {

mstEdges.add(e);

// merge the two sets
setl->addAll (*set2);
for (Vertex* v : *setl) {
Set<Vertex*>* setv = clusters([v];
if (setv != setl) {
clusters[v] = setl;

}

}

for (Set<Vertex*>* set : allSets) {
delete set;

}

// populate the graph with the edges
// We can't add the edge pointers directly
// because that would cause trouble freeing later
for (Edge *edge : mstEdges) {
mst.addEdge (edge->start->name,edge->end->name,edge->cost, false);

}



