
void kruskal(BasicGraph& graph, BasicGraph &mst) {
 // first, copy the graph and remove the edges
 // This is so we can populate it later with the mst edges
 mst = graph;
 mst.clearEdges();
 // put each vertex into a 'cluster', initially containing only itself
 Map<Vertex*, Set<Vertex*>* > clusters;
 Set<Vertex*> allVertices = graph.getVertexSet();
 Vector<Set<Vertex*>* > allSets; // for freeing later
 for (Vertex* v : allVertices) {
 Set<Vertex*>* set = new Set<Vertex*>();
 set->add(v);
 clusters[v] = set;
 allSets.add(set);
 }

 // put all edges into a priority queue, sorted by weight
 PriorityQueue<Edge*> pq;
 Set<Edge*> allEdges = graph.getEdgeSet();
 for (Edge* edge : allEdges) {
 pq.enqueue(edge, edge->cost);
 }

 // repeatedly pull min-weight edge out of PQ and add it to MST if its
 // endpoints are not already connected
 Set<Edge*> mstEdges;
 while (!pq.isEmpty()) {
 Edge* e = pq.dequeue();
 Set<Vertex*>* set1 = clusters[e->start];
 Set<Vertex*>* set2 = clusters[e->finish];
 if (set1 != set2) {
 mstEdges.add(e);

 // merge the two sets
 set1->addAll(*set2);
 for (Vertex* v : *set1) {
 Set<Vertex*>* setv = clusters[v];
 if (setv != set1) {
 clusters[v] = set1;
 }
 }
 }
 }

 for (Set<Vertex*>* set : allSets) {
 delete set;
 }

 // populate the graph with the edges
 // We can't add the edge pointers directly
 // because that would cause trouble freeing later
 for (Edge *edge : mstEdges) {
 mst.addEdge(edge->start->name,edge->end->name,edge->cost,false);
 }
}

