
Friday, June 1, 2018

Programming Abstractions

Spring 2018

Stanford University

Computer Science Department

Lecturer: Chris Gregg

CS 106B
Lecture 26: Esoteric Data
Structures: Skip Lists and
Bloom Filters

Today's Topics

•Logistics
•Final Exam Review materials posted by 5pm today: http://web.stanford.edu/
class/cs106b/handouts/final.html

•We will have a review session Tuesday, location TBA.

•Esoteric Data Structures
•Skip Lists
•Bloom Filters

http://web.stanford.edu/class/cs106b/handouts/final.html
http://web.stanford.edu/class/cs106b/handouts/final.html

Esoteric Data Structures
•In CS 106B, we have talked about
many standard, famous, and
commonly used data structures:
Vectors, Linked Lists, Trees, Hash
Tables, Graphs

•However, we only scratched the
surface of available data structures,
and data structure research is alive
and well to this day.

•Let's take a look at two interesting
data structures that have interesting
properties and you might not see
covered in detail in a standard course:
the skip list and the bloom filter.

Skip Lists

•A "skip list" is a balanced search structure that maintains an ordered,
dynamic set for insertion, deletion and search

•What other efficient (log n or better) sorted search structures have we
talked about?

Hash Tables (nope, not sorted)
Heaps (nope, not searchable)

Sorted Array (kind of, but, insert/delete is O(n))
Binary Trees (only if balanced, e.g., AVL or Red/Black)

Skip Lists

•A skip list is a simple, randomized search structure that will give us
O(log N) in expectation for search, insert, and delete, but also with high
probability.

•Invented by William Pugh in 1989 -- fairly recent!

Improving the Linked List

•Let's see what we can do with a linked list to make it better.
•How long does it take to search a sorted, doubly-linked list for an
element?

14 23 34 42 50 59 66 72 79

log(N) nope!
it is O(n) … we must traverse the list!

head

Improving the Linked List

•How might we help this situation?

14 23 34 42 50 59 66 72 79

Improving the Linked List

•What if we put another link into the middle?

14 23 34 42 50 59 66 72 79
head

middle

•This would help a little…we could start searching from the middle, but
we would still have to traverse

•O(n) becomes ...O((½)n) becomes ... O(n)

Improving the Linked List

•Maybe we could add more pointers…

14 23 34 42 50 59 66 72 79
head

50

•This would help some more…but still doesn't solve the underlying
problem.

23 66

Improving the Linked List

•Let's play a game. I've chosen the numbers for this list in a particular
way. Does anyone recognize the sequence?

14 23 34 42 50 59 66 72 79

Improving the Linked List

•Let's play a game. I've chosen the numbers for this list in a particular
way. Does anyone recognize the sequence?

14 23 34 42 50 59 66 72 79

•These are subway stops on the NYC 7th Avenue line :)

Improving the Linked List

•A somewhat unique feature in the New York City subway system is that
it has express lines:

14 23 34 42 50 59 66 72 79

14 34 42 72

•This models a skip list almost perfectly!

Improving the Linked List

•To search the list (or ride the subway): Walk right in the top list (L1) and
when you’ve gone too far, go back and then down to the bottom list
(L2) (e.g., search for 59)

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72

Improving the Linked List
•What is the best placement for the nodes in L1?
•This placement might be good for subways, but we care about worst-
case performance, which we want to minimize. How about equally
spaced nodes?

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72

Improving the Linked List
•The “search cost” can be represented by |L1| + (|L2| / |L1|), or |L1| +
(n / |L1|), where n is the number of nodes in L2 (L2 must have all stops)

•Let’s do some calculus to minimize this amount…
•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72

Improving the Linked List

•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n
•So, the search cost with a minimum second list is √n + n/√n = 2√n
•We want them equally spaced.

L2 14 23 34 42 50 59 66 72 79

L1 14 50 79

√n √n √n

} √n

Improving the Linked List

•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n
•So, the search cost with a minimum second list is √n + n/√n = 2√n
•We want them equally spaced. Big O?

L2 14 23 34 42 50 59 66 72 79

L1 14 50 79

√n √n √n

} √n

O(2√n) = O(√n)
Good? Let's compare to O(log n)

Improving the Linked List
What if we had more linked lists??

• 2 sorted lists: 2√n

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 79

√n √n √n

} √n

Improving the Linked List

L3 --- --- --- --- --- --- --- --- ---

∛n ∛n ∛n

What if we had more linked lists??
• 2 sorted lists: 2√n
• 3 sorted lists: 3∛n

L1 14 50 79 } 3

L2 14 23 34 42 50 59 66 72 79 } 9

} 27

Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists??
• 2 sorted lists: 2√n

k

• 3 sorted lists: 3∛n
• k sorted lists: k√n

L1 14 50 79

Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists??
• 2 sorted lists: 2√n

k

• 3 sorted lists: 3∛n

• log n sorted lists:
• k sorted lists: k√n

L1 14 50 79

Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists??
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n √n
• k sorted lists: k√n What is √n equal to?log n

L1 14 50 79

Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists??
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n √n
• k sorted lists: k√n What is √n equal to?log n

√n = 2log n

L1 14 50 79

Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists??
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n √n = 2 log n : logarithmic behavior!
• k sorted lists: k√n

L1 14 50 79

Skip Lists
log n linked lists look like a binary tree (and act like one!)

14 23 34 42 50 59 66 72 79

14 34 50 66 79

14 50 79

14 79

Building a Skip List

We just determined that the best option if we
have n elements is to have log2n lists.

Building a Skip List

To build a skip list, we could try to keep all the
elements perfectly aligned — in the lowest
list, we have n elements, and in the next list
up we have n/2 elements, etc.

Building a Skip List

To build a skip list, we could try to keep all the
elements perfectly aligned — in the lowest
list, we have n elements, and in the next list
up we have n/2 elements, etc.

This is not efficient…we would have to be
moving links all over the place!

Building a Skip List

So…what we do instead is implement a
probabilistic strategy —

Building a Skip List

So…what we do instead is implement a
probabilistic strategy — we flip a coin!

Building a Skip List Probabilistically

1. All elements must go into the bottom list (search to find the spot)
2. After inserting into the bottom list, flip a fair, two sided coin. If the coin

comes up heads, add the element to the next list up, and flip again,
repeating step 2.

3. If the coin comes up tails, stop.
(example on board - you do have to have -∞ on each level)

Let's build one!

Skip Lists: Big(O) for Building, Searching, Deleting
To search a skip list, we "traverse" the list level-by-level, and there is a high probability
that there are log n levels. Each level up has a good probability to have approximately

half the number of elements. There is a high probability that searching is O(log n).

To insert, we first search O(log n), and then we must flip the coin to keep adding. Worst
case? O(∞). But, there is a very good probability that we will have to do a small number

of inserts up the list. So, this has a high probability of also being simply O(log n)

To delete? Find the first instance of your value, then delete from all the lists — also
O(log n).

Bloom Filters

Our second esoteric data structure is called a bloom filter,
named for its creator, Burton Howard Bloom, who invented

the data structure in 1970.

A bloom filter is a space efficient, probabilistic data
structure that is used to tell whether a member is in a set.

Bloom Filters

Bloom filters are a bit odd because they can definitely tell
you whether an element is not in the set, but can only say

whether the element is possibly in the set.

Bloom Filters

In other words: “false positives” are possible, but “false
negatives” are not.

(A false positive would say that the element is in the set
when it isn’t, and a false negative would say that the

element is not in the set when it is.

Bloom Filters

The idea is that we have a “bit array.” We will model a bit
array with a regular array, but you can compress a bit array
by up to 32x because there are 8 bits in a byte, and there

are 4 bytes to a 32-bit number (thus, 32x!) (although Bloom
Filters themselves need more space per element than 1 bit).

Bloom Filters

a bit array:

1 0 1 1 0 1 1 1

Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

The hash functions should be independent, and the optimal amount
is calculable based on the number of items you are hashing, and
the length of your table (see Wikipedia for details).

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filters

Values then get hashed by all k hashes, and
the bit in the hashed position is set to 1 in
each case.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

Bloom Filter Example

Insert 129: x=129, k1=1, k2=4

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 1 0 0 1 0 0 0

k1 == 1, so we change bit 1 to a 1
k2 == 4, so we change bit 4 to a 1

Bloom Filters

Insert 479: x=479, k1=2, k2=4

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 == 2, so we change bit 2 to a 1
k2 == 4, so we would change bit
 4 to a 1, but it is already a 1.

Bloom Filters

To check if 129 is in the table, just hash again
and check the bits.
k1=1, k2=4: probably in the table!
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Bloom Filters

To check if 123 is in the table, hash and
check the bits. k1=0, k2=2: cannot be in
table because the 0 bit is still 0.

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Bloom Filters

To check if 402 is in the table, hash and
check the bits. k1=1, k2=4:
Probably in the table (but isn’t! False positive!).
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Online example: http://billmill.org/bloomfilter-tutorial/

http://billmill.org/bloomfilter-tutorial/

Bloom Filters: Probability of a False Positive

What is the probability that we have a false
positive?

If m is the number of bits in the array, then the
probability that a bit is not set to 1 is

Bloom Filters: Probability of a False Positive

If k is the number of hash functions, the probability
that the bit is not set to 1 by any hash function is

Bloom Filters: Probability of a False Positive

If we have inserted n elements, the probability that
a certain bit is still 0 is

Bloom Filters: Probability of a False Positive

To get the probability that a bit is 1 is just 1- the
answer on the previous slide:

Bloom Filters: Probability of a False Positive

Now test membership of an element that is not in
the set. Each of the k array positions computed by
the hash functions is 1 with a probability as above.
The probability of all of them being 1, (false
positive):

Bloom Filters: Probability of a False Positive

For our previous example, m=8, n=2, k=2, so:

= 0.17, or 17% of the time we will get
 a false positive.

Bloom Filters: Why?

Why would we want a structure that can produce
false positives?

Example: Google Chrome uses a local Bloom
Filter to check for malicious URLs — if there is a
hit, a stronger check is performed.

Bloom Filters: Why?

There is one more negative issue with a Bloom
Filter: you can’t delete! If you delete, you might
delete another inserted value, as well! You could
keep a second bloom filter of removals, but then
you could get false positives in that filter…

Bloom Filters: Why?

You have to perform k hashing functions for an
element, and then either flip bits, or read bits.
Therefore, they perform in O(k) time, which is
independent of the number of elements in the
structure. Additionally, because the hashes are
independent, they can be parallelized, which gives
drastically better performance with multiple
processors.

References and Advanced Reading

•References:
•MIT Skip Lists lecture: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/

•Online Bloom Filter example: http://billmill.org/bloomfilter-tutorial/
•Wikipedia Bloom Filters: https://en.wikipedia.org/wiki/Bloom_filter

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://billmill.org/bloomfilter-tutorial/
https://en.wikipedia.org/wiki/Bloom_filter

Extra Slides

Esoteric Data Structure: Ropes
Normally, strings are kept in memory in
contiguous chunks:
“The_quick_fox_jumps_over_the_dog”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T h e _ q u i c k _ f o x _ j u m p s _ o v e r _ t h e _ d o g

Ropes
However, this doesn’t make it easy to insert into
a string: you have to break the whole string up
each time, and re-create a new string.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T h e _ q u i c k _ f o x _ j u m p s _ o v e r _ t h e _ d o g

Ropes
A “rope” is a tree of smaller
strings (eventually—it can
start as a long string) that
makes it efficient to store
and manipulate the entire
string.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Ropes
Strings are only kept at
leaves, and the weight of a
node is the length of the
string plus the sum of all of
the weights in its left
subtree.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Ropes
Searching for a character at a position, do
a recursive search from the root: to search
for the “j” at character position 21:

• The root is 16, which is less than 21. We
subtract 21-16==5, and we go right.

• 24 > 5, no subtraction (only on right), go
left

• 19 > 5, go left.
• 19 > 5, but no more left! The character at

the index of the string at that node is “j”

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Ropes: Full search algorithm: O(log n) 16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

 // Note: Assumes 1-based indexing.
 function index(RopeNode node, integer i)
 if node.weight < i then
 return index(node.right, i - node.weight)
 else
 if exists(node.left) then
 return index(node.left, i)
 else
 return node.string[i]
 endif
 endif

Ropes: Concatenate(S1,S2)
Time: O(1) (or O(log N) time to
compute the root weight)

Simply create a new root
node, with left=S1 and
right=S2.

Ropes: Split(i,S)

split the string S into two new
strings S1 and S2, S1 = C1, …, Ci
and S2 = Ci + 1, …, Cm.
Time complexity: O(log N)

(step 1: split)

Ropes: Split(i,S)

split the string S into two new
strings S1 and S2, S1 = C1, …, Ci
and S2 = Ci + 1, …, Cm.
Time complexity: O(log N)

(step 2: update left (node D),
and elements on right still need
to be combined)

Ropes: Split(i,S)

split the string S into two new
strings S1 and S2, S1 = C1, …, Ci
and S2 = Ci + 1, …, Cm.
Time complexity: O(log N)

(step 3: combine with new root
P for right side)
(may need to balance)

Ropes: Insert(i,S’)

insert the string S’ beginning at
position i in the string s, to form a
new string C1, …, Ci, S’, Ci + 1, …,
Cm.
Time complexity: O(log N).

Can be done by a Split() and two
Concat() operations

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Ropes: Delete(i,j)

delete the substring Ci, …, Ci + j − 1,
from s to form a new string C1, …,
Ci − 1, Ci + j, …, Cm.
Time complexity: O(log N).

Can be done by two Split()
operations and one Concat()
operation

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Ropes: Report(i,j)

output the string Ci, …, Ci + j − 1.
Time complexity: O(j + log N)

To report the string Ci, …, Ci + j − 1,
output Ci, …, Ci + j − 1 by doing an in-
order traversal of T starting at the
node that has the ith element.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

Comparison: Ropes -vs- Strings (from Wikipedia)
Rope Advantages:
	•	 Ropes enable much faster insertion and deletion of text than monolithic string
arrays, on which operations have time complexity O(n).
	•	 Ropes don't require O(n) extra memory when operated upon (arrays need that
for copying operations)
	•	 Ropes don't require large contiguous memory spaces.
	•	 If only nondestructive versions of operations are used, rope is a persistent data
structure. For the text editing program example, this leads to an easy support for
multiple undo levels.

Comparison: Ropes -vs- Strings (from Wikipedia)
Rope Disadvantages:
	•	 Greater overall space usage when not being operated on, mainly to store
parent nodes. There is a trade-off between how much of the total memory is such
overhead and how long pieces of data are being processed as strings; note that
the strings in example figures above are unrealistically short for modern
architectures. The overhead is always O(n), but the constant can be made
arbitrarily small.
	•	 Increase in time to manage the extra storage
	•	 Increased complexity of source code; greater risk for bugs

