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loday's lopics

®| Ogistics
o[-inal Exam Review materials posted by 5pm today: http://web.stanford.edu/

class/cs106b/handouts/final.html
o\/\Ve will have a review session lTuesday, location TBA.

e[ -soteric Data Structures
e Skip Lists
eBloom Filters



http://web.stanford.edu/class/cs106b/handouts/final.html
http://web.stanford.edu/class/cs106b/handouts/final.html

Esoteric Data Structures

e|n CS 106B, we have talked about
many standard, famous, and
commonly used data structures:

Vectors, Linked Lists, Trees, Hash differe-gce'liSb

Tables, Graphs w
eHowever, we only scratched the 2-3-heap _:
surface of avallaple data structures, b bree

and data strupture research Is alive helghbmapm'—kd bree
and well to this day. Sp ay.bree3 Q_

o| ct's take a look at two interesting e f,
data structures that have interesting

poroperties and you mignt not see

covered In detail in a standard course:

the skip list and the bloom filter.




Skip Lists

oA "skip list" Is a balanced search structure that maintains an ordered,
dynamic set for insertion, deletion and search

o\\Vhat other efficient (log n or better) sorted search structures have we

talked about”?
Hash Tables (nope, not sorted)

Heaps (nope, not searchable)

Sorted Array (Kind of, but, insert/delete is O(n))
Binary Trees (only if balanced, e.qg., AVL or Red/Black)




Skip Lists

oA skip list is a simple, randomized search structure that will give us
O(log N) In expectation for search, insert, and delete, but also with high
orobabllity.

o|nvented by Willlam Pugh in 1989 -- fairly recent!




Improving the Linked List

o] ct's see what we can do with a linked list to make 1t better.
eHow long does it take to search a sorted, doubly-linked list for an
element”?

head

Shtadototodododnbn

togiiN} nope!

tis O(N) ... we must traverse the list!




Improving the Linked List

eHow might we help this situation”

| Pt adp 0ep nep o P77




Improving the Linked List

o\\hat if we put another link into the middle”

middlez
head

> 14 ap mep ssep e soep soef wap 2 pT9

e [ his would help a little...we could start searching from the middle, but
we would still have to traverse

*(O(n) becomes ... O((*2)n) becomes ... O(n)




Improving the Linked List

o)\laybe we could add more pointers...

232 50 2 662
CEE et ad s e n

® [ his would help some more...but still doesn't solve the underlying
poroblem.




Improving the Linked List

o| ct's play a game. |I've chosen the numbers for this list in a particular
way. Does anyone recognize the sequence”?

| 1 <p 24p <P ep S0ep oo coep 2 gp70




Improving the Linked List

o| ct's play a game. |I've chosen the numbers for this list in a particular
way. Does anyone recognize the sequence”?

| 1 <p 24p <P ep S0ep oo coep 2 gp70

¢ [hese are subway stops on the NYC 7th Avenue line :)




Improving the Linked List

o A somewhat unigue feature in the New York City subway system is that
't has express lines:

ug—puspedqg—T —t—Ppr |
- I N
| < <4p <P 2ep S04p sy oep 2 P70

¢ [his models a skip list almost perfectly!




Improving the Linked List

¢ [0 search the list (or ride the subway): Walk right in the top list (L1) and
when you've gone too far, go back and then down to the bottom list
(L2) (e.q., search for 59)

T
DRI I It i T 32

M1 1 1,




Improving the Linked List

e\\Vhat is the best placement for the nodes in L17

* [ his placement might be good for subways, but we care about worst-
case performance, which we want to minimize. How about equally
spaced nodes”

T e R R e et 70 B
R 4 1
[ Frefetadadugefn




Improving the Linked List

eThe “search cost” can be represented by |L1| + (|L2| / [L1]), or |[L1] +

(n / |L1]), where n is the number of nodes in L2 (L2 must have all stops)
o| ct's do some calculus to minimize this amount...

eThe minimum will be when [L1| is equal to (n/|L1]), or when |L1|=n

T e R R e et e 70 B
R 4 1
[ Frefetadadugefn




Improving the Linked List

eThe minimum will be when |L1] is equal to (n/|L1]), or when |L1]|=yn
¢SO0, the search cost with a minimum second list is y/n + n/{n = 2{n
o\\Ve want them equally spaced.

U | e [}
1 1 1 1
L2 | 14<pa<potap s2ep sO4p Soaf o< T2 79
Jn Jn Jn




Improving the Linked List

eThe minimum will be when |L1] is equal to (n/|L1]), or when |L1]|=yn
¢SO0, the search cost with a minimum second list is y/n + n/{n = 2{n
o\\Ne want them equally spaced. Big O O(2./n) = O({/n)

Good? Let's compare to O(log n)

U | e [}
1 1 1 1
L2 | 14<pa<potap s2ep sO4p Soaf o< T2 79
Jn Jn Jn




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n

14 __--m_ 1 /N
1 I —
2 | e aiep iaep soep soep s ap 72 Jr7e
Jyn Jyn Jyn




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

o [ e ] [ s
19
L2 14 23 34 42 50 59 /2 79
VN VN VN




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

k sorted lists: k&/n

o e | ] fe] | | ]m

U | e —pe | 0]
I I
2 | 14 <qpeo<poiep drep soep Sovp G p 72 79
Jyn Jyn Jyn




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

k sorted lists: k&/n
log N sorted lists:

o e | ] fe] | | ]m

U | e —pe | 0]
I I
2 | 14 <qpeo<poiep drep soep Sovp G p 72 79
Jyn Jyn Jyn




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

k sorted lists: k&/n
log n sorted lists: log A "yn

o e | ] fe] | | ]m

U | e —pe | 0]
I I
2 | 14 <qpeo<poiep drep soep Sovp G p 72 79
Jyn Jyn Jyn

What is 'e2/n equal t0?




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

k sorted lists: k&/n

' log n rP
log n sorted lists: log ri*"/n What is *¢{/n equal to"

ogn/N = 2

o e | ] fe] | | ]m

U | e —pe | 0]
I I
2 | 14 <qpeo<poiep drep soep Sovp G p 72 79
Jyn Jyn Jyn




Improving the Linked List

What if we had more linked lists?*?
2 sorted lists: 2n
3 sorted lists: 3vn

k sorted lists: k&/n
log n sorted lists: log n**"\/n = 2 log n : logarithmic behavior!

o e | ] fe] | | ]m

U | e —pe | 0]
I I
2 | 14 <qpeo<poiep drep soep Sovp G p 72 79
Jyn Jyn Jyn




Skip Lists

log n linked lists look like a binary tree (and act like onel)
_______
I Y D D D D —
- r -
______

__ ) ed— I A




Building a Skip List

We Just determined that the best option If we
nave n elements is to have 1ogon lists.




Building a Skip List

1o build a skip list, we could try to keep all the
elements perfectly aligned — In the lowest
Ist, we have n elements, and in the next list
up we have n/2 elements, etc.




Building a Skip List

1o build a skip list, we could try to keep all the
elements perfectly aligned — In the lowest
Ist, we have n elements, and in the next list
up we have n/2 elements, etc.

This I1s not efficient...we would have to be
moving links all over the place!




Building a Skip List

SO...what we do instead is implement a
probapilistic strateqgy —




Building a Skip List

SO...what we do instead is implement a
probapilistic strateqgy — we flip a coin!




Building a Skip List Probabilistically

1. All elements must go into the bottom list (search to find the spot)

2. After inserting into the bottom list, flip a fair, two sided coin. If the coin
comes up heads, add the element to the next list up, and flip again,
repeating step 2.

3. If the coin comes up tails, stop.

(example on board - you do have to have -« on each level)

Let's builld onel




Skip Lists: Big(O) for Building, Searching, Deleting

Jo search a skip list, we "traverse” the list level-by-level, and there is a high probability
that there are log n levels. Each level up has a good probabillity to have approximately
half the number of elements. There is a high probability that searching is O(log n).

To insert, we first search O(log n), and then we must flip the coin to keep adding. Worst
case”? O(e). But, there is a very good probability that we will have to do a small number
of inserts up the list. So, this has a high probability of also being simply O(log n)

To delete” Find the first instance of your value, then delete from all the lists — also
O(log n).




Bloom Filters

Our second esoteric data structure is called a bloom filter,
named for its creator, Burton Howard Bloom, who invented
the data structure in 1970.

A bloom filter Is a space efficient, probabilistic data
structure that Is used to tell whether a member Is In a set.




Bloom Filters

Bloom filters are a bit odd because they can definitely tell
you whether an element is not In the set, but can only say
whether the element Is possibly In the set.




Bloom Filters

N other words: “false positives” are possible, but “false
negatives” are not.
(A false positive would say that the element is in the set
when It Isn't, and a false negative would say that the
element Is not In the set when it Is.




Bloom Filters

The iIdea Is that we have a “bit array.” We will model a bit
array with a regular array, but you can compress a bit array
oy Up to 32X because there are 3 bits In a byte, and there
are 4 bytes to a 32-bit number (thus, 32x!) (although Bloom
Filters themselves need more space per element than 1 bit).




Bloom Filters

a bit array:




Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

k1 =(183-X% 13)% 7, k2 = (3 + 5x) % 7, etc.

o v 2o e e e |7




Bloom Filters

Bloom Filters: start with an empty bit array (all
zeros), and k hash functions.

The hash functions should be independent, and the optimal amount
IS calculable based on the number of items you are hashing, and
the length of your table (see Wikipedia for details).




Bloom Filters

Values then get hashed by all kK hashes, ano
the bit In the hashed position Is set to 1 In
each case.




Bloom Filter eExample

Insert 129: x=129, k1=1, k2=4

kK1 =(13- X% 13)% 7, k2 = (3 + 5x) % 7, etc.

K1 ==1,sowechange bit 1toa 1
K2 == 4, so we change bit4 toa 1




Bloom Filters

Insert 479: x=479, K1=2, kK2=4

kK1 =(13- X% 13)% 7, k2 = (3 + 5x) % 7, etc.

K1 ==2, sowe change bit2toa
K2 == 4, sO we would change bit
4toal, butitisalreadyal. (7




Bloom Filters

lo check If 129 Is In the table, just hash again
and check the bits.

K1=1, k2=4: probably in the table!

k1=(13-X% 13)% 7, k2 = (3 + 5x) % 7, etc.




Bloom Filters

To check If 123 Is In the table, hash and
check the bits. k1=0, k2=2: cannot be In
table because the O bit 1s still O,

k1=(13-X% 13)% 7, k2 = (3 + 5x) % 7, etc.




Bloom Filters

To check If 402 I1s In the table, hash and
check the bits. k1=1, k2=4:

Probably in the table (but isn’t! False positivel).
B RN BN BN AN B N
o j1 |1 fof1]ofo]o

Online example: http://billmill.org/bloomfilter-tutorial/
k1=(13-X% 13)% 7, k2 = (3 + 5x) % 7, etc.



http://billmill.org/bloomfilter-tutorial/

Bloom Fllters: Probabllity of a False Positive

What Is the probabllity that we have a false
positive’?

f m Is the number of bits in the array, then the
orobabillity that a bit isnot setto 1 1s




Bloom Fllters: Probabllity of a False Positive

f K IS the number of hash functions, the probabllity
that the bit Is not set to 1 by any hash function Is




Bloom Fllters: Probabllity of a False Positive

f we have Inserted n elements, the probabllity that
a certain bit 1s still O Is

1 kn
(1-7)
It




Bloom Fllters: Probabllity of a False Positive

o get the probabillity that a bit i1s 1 Is just 1- the
answer on the previous slide:

1 kn
1 — (1 _ —)
I




Bloom Fllters: Probabllity of a False Positive

Now test membership of an element that is not In
the set. Each of the k array positions computed by
the hash functions is 1 with a probability as above.
The probabillity of all of them being 1, (false
positive):




Bloom Fllters: Probabllity of a False Positive

FOr Our previous example, m=8, n=2, K=2, SO

- S kny F
(1— 1—i ) = 0.17, or 17% of the time we will get
‘ a false positive.




Bloom Filters: Why?

Why would we want a structure that can produce
false positives”?

Example: Google Chrome uses a local Bloom
Filter to check for malicious URLs — if there Is a
Nit, a stronger check Is performeaq.




Bloom Filters: Why?

I here Is one more negative issue with a Bloom
Filter: you can’t delete! If you delete, you might
delete another inserted value, as well! You could
keep a second bloom filter of removals, but then
yYOU could get false positives In that filter...




Bloom Filters: Why?

YOou have to perform k hashing functions for an
element, and then either flip bits, or read bits.
Therefore, they perform in O(k) time, which Is
Independent of the number of elements In the
structure. Additionally, because the hashes are
INndependent, they can be parallelized, which gives
drastically better performance with multiple
OrOCESSOrS.




References and Advanced Reading

 References:

oMIT Skip Lists lecture: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-0406]-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/

*Online Bloom Filter example: http://bi

o\Wikipedia

Imill.org/bloomfilter-tutorial/

Bloom Filters: https://en.wi

Kipedia.org/wiki/Bloom filter



http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://billmill.org/bloomfilter-tutorial/
https://en.wikipedia.org/wiki/Bloom_filter
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Esoteric Data Structure: Ropes
Normally, strings are kept in memory Iin

contiguous Chunks;:
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Ropes
However, this doesn’t make it easy to insert into

a string: you have to break the whole string up
each time, and re-create a new string.

3

4

5

6

/

8

9

10

11

12

13

14

15

16

17

13

19

20

21

22

23

24

25

20

2/

28

29

30

31

®

U

C

K

f

O

X

J'

U

m

P

S

O

Vv

e

r

L




ROpes
A “rope’” Is a tree of smaller
strings (eventually—it can
start as a long string) that
makes It efficient to store
and manipulate the entire The_quick_  brown_
string.

fox_jumps_over the lazy




ROpes

Strings are only kept at
leaves, and the weight of a
node Is the length of the
string plus the sum of all of
the weignhts In Its left The_quick_  brown_
subtree.

fox_jumps_over the lazy




Ropes
Searching for a character at a position, do
a recursive search from the root: to search
for the )" at character position 21:

The root Is 16, which is less than 21. We
subtract 21-16==5, and we go right.

24 > 5, no subtraction (only on right), go
left

19 > 5, go lett.

19 > 5, but no more left! The character at
the index of the string at that node is “j”

The _quick _  brown_

fox_jumps_over the lazy




Ropes: Full search algorithm: O(log n)

// Note: Assumes l-based indexing.
function index(RopeNode node, integer 1)
if node.weight < 1 then
return index(node.right, 1 - node.weight)
else
if exists(node.left) then
return index(node.left, 1)
else _
return node.string[i] P_ql"Ck_ brﬂwn_
endif
endif

fox_jumps_over the lazy




Ropes: Concatenate(S1,52)
Time: O(1) (or O(log N) time to
compute the root weight)

Simply create a new root
node, with left=S1 and
rght=52.




Ropes: Split(i,S)

split the string S into two new

strings S1 and S2, S1 = Cq, ..

and S2 = Gi+ 1, ..., Cm.
Time complexity: O(log N)

(step 1: split)

., G

A
(22,
B
O
o D
F G
e'
J K
2 O
na me _i




Ropes: Split(i,S)

split the string S into two new

strings S1 and S2, S1=C4, ..., G
aﬂd82=Ci+1,...,Cm. C
Time complexity: Olog N) O

E
(step 2: update left (nhode D), O

Hello_

and elements on right still need
to be combined)




Ropes: Split(i,S)

split the string S into two new
strings S1 and S2, S1 =C1, ..., Ci
and S2 =GCi+1, ..., Cm. O
Time complexity: O(log N)
E
(step 3: combine with new root  Helio_
P for right side)
(Mmay need to balance)




Ropes: Insert(i,S’)

insert the string S’ beginning at
position | In the string s, to form a
new string Cy, ..., G, S, Gi+1, ..
Crm.

Time complexity: O(log N).

Can be done by a Split() and two
Concat() operations

“J

The_quick _

brown

fox_jumps_over_the_

lazy




Ropes: Delete(l,))

delete the substring G, ..., Ci+j-1,
from s to form a new string Cq, ...,
Ci-1, Gi+j, ..., Cm.

Time complexity: O(log N).

Can be done by two Split() The quick  brown
operations and one Concat() - - —
operatior

fox_jumps_over the lazy




Ropes: Report(l,))

output the string G, ..., Gi+j-1.
Time complexity: O( + log N)

To report the string G, ..., Ci+j-1,
output Gi, ..., Gi+j-1 by doing an in-
order traversal of | starting atthe  The quick brown
node that has the it element. a a a

fox_jumps_over the lazy




Comparison: Ropes -vs- Strings (from Wikipedia)

Rope Advantages:

e Ropes enable much faster insertion and deletion of text than monolithic string
arrays, on which operations have time complexity O(n).

e Ropes don't require O(N) extra memory when operated upon (arrays need that
for copying operations)

e Ropes don't require large contiguous memory spaces.

e |f only nondestructive versions of operations are used, rope Is a persistent data
structure. For the text editing program example, this leads to an easy support for
multiple undo levels.




Comparison: Ropes -vs- Strings (from Wikipedia)
Rope Disadvantages:

Greater overall space usage when not being operated on, mainly to store

parent nodes. There is a trade-off between how much of the total memory Is such
overnead and how long pieces of data are being processed as strings; note that
the strings In example figures above are unrealistically short for modern
architectures. The overhead is always O(n), but the constant can be made

arbitrarily small.

Increase In time to manage the extra storage
Increased complexity of source code; greater risk for bugs




