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Today's Topics

•Logistics 
•Final Exam Review materials posted by 5pm today: http://web.stanford.edu/
class/cs106b/handouts/final.html  

•We will have a review session Tuesday, location TBA. 

•Esoteric Data Structures 
•Skip Lists 
•Bloom Filters

http://web.stanford.edu/class/cs106b/handouts/final.html
http://web.stanford.edu/class/cs106b/handouts/final.html


Esoteric Data Structures
•In CS 106B, we have talked about 
many standard, famous, and 
commonly used data structures: 
Vectors, Linked Lists, Trees, Hash 
Tables, Graphs 

•However, we only scratched the 
surface of available data structures, 
and data structure research is alive 
and well to this day. 

•Let's take a look at two interesting 
data structures that have interesting 
properties and you might not see 
covered in detail in a standard course: 
the skip list and the bloom filter.



Skip Lists

•A "skip list" is a balanced search structure that maintains an ordered, 
dynamic set for insertion, deletion and search 

•What other efficient (log n or better) sorted search structures have we 
talked about?

Hash Tables (nope, not sorted) 
Heaps (nope, not searchable) 

Sorted Array (kind of, but, insert/delete is O(n)) 
Binary Trees (only if balanced, e.g., AVL or Red/Black) 



Skip Lists

•A skip list is a simple, randomized search structure that will give us 
O(log N) in expectation for search, insert, and delete, but also with high 
probability. 

•Invented by William Pugh in 1989 -- fairly recent!



Improving the Linked List

•Let's see what we can do with a linked list to make it better. 
•How long does it take to search a sorted, doubly-linked list for an 
element? 

14 23 34 42 50 59 66 72 79

log(N) nope! 
it is O(n) … we must traverse the list!

head



Improving the Linked List

•How might we help this situation?

14 23 34 42 50 59 66 72 79



Improving the Linked List

•What if we put another link into the middle?

14 23 34 42 50 59 66 72 79
head

middle

•This would help a little…we could start searching from the middle, but 
we would still have to traverse 

•O(n) becomes ...O((½)n) becomes ...  O(n) 



Improving the Linked List

•Maybe we could add more pointers…

14 23 34 42 50 59 66 72 79
head

50

•This would help some more…but still doesn't solve the underlying 
problem.

23 66



Improving the Linked List

•Let's play a game. I've chosen the numbers for this list in a particular 
way. Does anyone recognize the sequence?

14 23 34 42 50 59 66 72 79



Improving the Linked List

•Let's play a game. I've chosen the numbers for this list in a particular 
way. Does anyone recognize the sequence?

14 23 34 42 50 59 66 72 79

•These are subway stops on the NYC 7th Avenue line :)



Improving the Linked List

•A somewhat unique feature in the New York City subway system is that 
it has express lines:

14 23 34 42 50 59 66 72 79

14 34 42 72

•This models a skip list almost perfectly!



Improving the Linked List

•To search the list (or ride the subway): Walk right in the top list (L1) and 
when you’ve gone too far, go back and then down to the bottom list 
(L2) (e.g., search for 59)

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72



Improving the Linked List
•What is the best placement for the nodes in L1? 
•This placement might be good for subways, but we care about worst-
case performance, which we want to minimize. How about equally 
spaced nodes?

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72



Improving the Linked List
•The “search cost” can be represented by |L1| + (|L2| / |L1|), or |L1| + 
(n / |L1|), where n is the number of nodes in L2 (L2 must have all stops) 

•Let’s do some calculus to minimize this amount… 
•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n

L2 14 23 34 42 50 59 66 72 79

L1 14 34 42 72



Improving the Linked List

•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n 
•So, the search cost with a minimum second list is √n + n/√n = 2√n 
•We want them equally spaced.

L2 14 23 34 42 50 59 66 72 79

L1 14 50 79

√n √n √n

} √n



Improving the Linked List

•The minimum will be when |L1| is equal to (n/|L1|), or when |L1|=√n 
•So, the search cost with a minimum second list is √n + n/√n = 2√n 
•We want them equally spaced. Big O?

L2 14 23 34 42 50 59 66 72 79

L1 14 50 79

√n √n √n

} √n

O(2√n) = O(√n) 
Good? Let's compare to O(log n)



Improving the Linked List
What if we had more linked lists?? 

• 2 sorted lists: 2√n

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 79

√n √n √n

} √n



Improving the Linked List

L3 --- --- --- --- --- --- --- --- ---

∛n ∛n ∛n

What if we had more linked lists?? 
• 2 sorted lists: 2√n
• 3 sorted lists: 3∛n

L1 14 50 79 } 3

L2 14 23 34 42 50 59 66 72 79 } 9

} 27



Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists?? 
• 2 sorted lists: 2√n

k

• 3 sorted lists: 3∛n
• k sorted lists: k√n

L1 14 50 79



Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists?? 
• 2 sorted lists: 2√n

k

• 3 sorted lists: 3∛n

• log n sorted lists:
• k sorted lists: k√n

L1 14 50 79



Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists?? 
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n   √n
• k sorted lists: k√n What is     √n equal to?log n

L1 14 50 79



Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists?? 
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n   √n
• k sorted lists: k√n What is     √n equal to?log n

√n = 2log n

L1 14 50 79



Improving the Linked List

L2 14 23 34 42 50 59 66 72 79

L1 14 42 66 } √n

√n √n √n

What if we had more linked lists?? 
• 2 sorted lists: 2√n

k

log n

• 3 sorted lists: 3∛n

• log n sorted lists: log n   √n = 2 log n : logarithmic behavior!
• k sorted lists: k√n

L1 14 50 79



Skip Lists
log n linked lists look like a binary tree (and act like one!)

14 23 34 42 50 59 66 72 79

14 34 50 66 79

14 50 79

14 79



Building a Skip List

We just determined that the best option if we 
have n elements is to have log2n lists.



Building a Skip List

To build a skip list, we could try to keep all the 
elements perfectly aligned — in the lowest 
list, we have n elements, and in the next list 
up we have n/2 elements, etc.



Building a Skip List

To build a skip list, we could try to keep all the 
elements perfectly aligned — in the lowest 
list, we have n elements, and in the next list 
up we have n/2 elements, etc. 

This is not efficient…we would have to be 
moving links all over the place!



Building a Skip List

So…what we do instead is implement a 
probabilistic strategy —



Building a Skip List

So…what we do instead is implement a 
probabilistic strategy — we flip a coin!



Building a Skip List Probabilistically

1. All elements must go into the bottom list (search to find the spot) 
2. After inserting into the bottom list, flip a fair, two sided coin. If the coin 

comes up heads, add the element to the next list up, and flip again, 
repeating step 2. 

3. If the coin comes up tails, stop. 
(example on board - you do have to have -∞ on each level) 

Let's build one!



Skip Lists: Big(O) for Building, Searching, Deleting
To search a skip list, we "traverse" the list level-by-level, and there is a high probability 
that there are log n levels. Each level up has a good probability to have approximately 

half the number of elements. There is a high probability that searching is O(log n). 

To insert, we first search O(log n), and then we must flip the coin to keep adding. Worst 
case? O(∞). But, there is a very good probability that we will have to do a small number 

of inserts up the list. So, this has a high probability of also being simply O(log n) 

To delete? Find the first instance of your value, then delete from all the lists — also 
O(log n).



Bloom Filters

Our second esoteric data structure is called a bloom filter, 
named for its creator, Burton Howard Bloom, who invented 

the data structure in 1970. 

A bloom filter is a space efficient, probabilistic data 
structure that is used to tell whether a member is in a set.



Bloom Filters

Bloom filters are a bit odd because they can definitely tell 
you whether an element is not in the set, but can only say 

whether the element is possibly in the set.



Bloom Filters

In other words: “false positives” are possible, but “false 
negatives” are not. 

(A false positive would say that the element is in the set 
when it isn’t, and a false negative would say that the 

element is not in the set when it is.



Bloom Filters

The idea is that we have a “bit array.” We will model a bit 
array with a regular array, but you can compress a bit array 
by up to 32x because there are 8 bits in a byte, and there 

are 4 bytes to a 32-bit number (thus, 32x!) (although Bloom 
Filters themselves need more space per element than 1 bit).



Bloom Filters

a bit array:

1 0 1 1 0 1 1 1



Bloom Filters

Bloom Filters: start with an empty bit array (all 
zeros), and k hash functions. 

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0



Bloom Filters

Bloom Filters: start with an empty bit array (all 
zeros), and k hash functions. 

The hash functions should be independent, and the optimal amount 
is calculable based on the number of items you are hashing, and 
the length of your table (see Wikipedia for details).

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0



Bloom Filters

Values then get hashed by all k hashes, and 
the bit in the hashed position is set to 1 in 
each case. 

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0



Bloom Filter Example

Insert 129: x=129, k1=1, k2=4 

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 1 0 0 1 0 0 0

k1 == 1, so we change bit 1 to a 1 
k2 == 4, so we change bit 4 to a 1



Bloom Filters

Insert 479: x=479, k1=2, k2=4 

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 == 2, so we change bit 2 to a 1 
k2 == 4, so we would change bit  
              4 to a 1, but it is already a 1.



Bloom Filters

To check if 129 is in the table, just hash again 
and check the bits. 
k1=1, k2=4: probably in the table! 
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.



Bloom Filters

To check if 123 is in the table, hash and 
check the bits. k1=0, k2=2: cannot be in 
table because the 0 bit is still 0. 

0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.



Bloom Filters

To check if 402 is in the table, hash and 
check the bits. k1=1, k2=4: 
Probably in the table (but isn’t! False positive!). 
0 1 2 3 4 5 6 7

0 1 1 0 1 0 0 0

k1 = (13 - (x % 13))% 7, k2 = (3 + 5x) % 7, etc.

Online example: http://billmill.org/bloomfilter-tutorial/ 

http://billmill.org/bloomfilter-tutorial/


Bloom Filters: Probability of a False Positive

What is the probability that we have a false 
positive? 

If m is the number of bits in the array, then the 
probability that a bit is not set to 1 is



Bloom Filters: Probability of a False Positive

If k is the number of hash functions, the probability 
that the bit is not set to 1 by any hash function is



Bloom Filters: Probability of a False Positive

If we have inserted n elements, the probability that 
a certain bit is still 0 is



Bloom Filters: Probability of a False Positive

To get the probability that a bit is 1 is just 1- the 
answer on the previous slide:



Bloom Filters: Probability of a False Positive

Now test membership of an element that is not in 
the set. Each of the k array positions computed by 
the hash functions is 1 with a probability as above. 
The probability of all of them being 1, (false 
positive):



Bloom Filters: Probability of a False Positive

For our previous example, m=8, n=2, k=2, so:

= 0.17, or 17% of the time we will get    
               a false positive.



Bloom Filters: Why?

Why would we want a structure that can produce 
false positives? 

Example: Google Chrome uses a local Bloom 
Filter to check for malicious URLs — if there is a 
hit, a stronger check is performed.



Bloom Filters: Why?

There is one more negative issue with a Bloom 
Filter: you can’t delete! If you delete, you might 
delete another inserted value, as well! You could 
keep a second bloom filter of removals, but then 
you could get false positives in that filter…



Bloom Filters: Why?

You have to perform k hashing functions for an 
element, and then either flip bits, or read bits. 
Therefore, they perform in O(k) time, which is 
independent of the number of elements in the 
structure. Additionally, because the hashes are 
independent, they can be parallelized, which gives 
drastically better performance with multiple 
processors.



References and Advanced Reading

•References: 
•MIT Skip Lists lecture: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/  

•Online Bloom Filter example: http://billmill.org/bloomfilter-tutorial/  
•Wikipedia Bloom Filters: https://en.wikipedia.org/wiki/Bloom_filter   

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-12-skip-lists/
http://billmill.org/bloomfilter-tutorial/
https://en.wikipedia.org/wiki/Bloom_filter


Extra Slides



Esoteric Data Structure: Ropes 
Normally, strings are kept in memory in 
contiguous chunks: 
“The_quick_fox_jumps_over_the_dog”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T h e _ q u i c k _ f o x _ j u m p s _ o v e r _ t h e _ d o g



Ropes 
However, this doesn’t make it easy to insert into 
a string: you have to break the whole string up 
each time, and re-create a new string.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T h e _ q u i c k _ f o x _ j u m p s _ o v e r _ t h e _ d o g



Ropes 
A “rope” is a tree of smaller 
strings (eventually—it can 
start as a long string) that 
makes it efficient to store 
and manipulate the entire 
string.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Ropes 
Strings are only kept at 
leaves, and the weight of a 
node is the length of the 
string plus the sum of all of 
the weights in its left 
subtree.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Ropes 
Searching for a character at a position, do 
a recursive search from the root: to search 
for the “j” at character position 21: 

• The root is 16, which is less than 21. We 
subtract 21-16==5, and we go right. 

• 24 > 5, no subtraction (only on right), go 
left 

• 19 > 5, go left. 
• 19 > 5, but no more left! The character at 

the index of the string at that node is “j”

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Ropes: Full search algorithm: O(log n) 16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog

 // Note: Assumes 1-based indexing.
 function index(RopeNode node, integer i)
     if node.weight < i then
         return index(node.right, i - node.weight)
     else
         if exists(node.left) then
             return index(node.left, i)
         else
             return node.string[i]
         endif
     endif



Ropes: Concatenate(S1,S2) 
Time: O(1) (or O(log N) time to 
compute the root weight) 

Simply create a new root 
node, with left=S1 and 
right=S2. 



Ropes: Split(i,S) 

split the string S into two new 
strings S1 and S2, S1 = C1, …, Ci 
and S2 = Ci + 1, …, Cm. 
Time complexity: O(log N) 

(step 1: split)



Ropes: Split(i,S) 

split the string S into two new 
strings S1 and S2, S1 = C1, …, Ci 
and S2 = Ci + 1, …, Cm. 
Time complexity: O(log N) 

(step 2: update left (node D), 
and elements on right still need  
to be combined)



Ropes: Split(i,S) 

split the string S into two new 
strings S1 and S2, S1 = C1, …, Ci 
and S2 = Ci + 1, …, Cm. 
Time complexity: O(log N) 

(step 3: combine with new root 
P for right side) 
(may need to balance)



Ropes: Insert(i,S’) 

insert the string S’ beginning at 
position i in the string s, to form a 
new string C1, …, Ci, S’, Ci + 1, …, 
Cm. 
Time complexity: O(log N). 

Can be done by a Split() and two 
Concat() operations

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Ropes: Delete(i,j) 

delete the substring Ci, …, Ci + j − 1, 
from s to form a new string C1, …, 
Ci − 1, Ci + j, …, Cm. 
Time complexity: O(log N). 

Can be done by two Split() 
operations and one Concat() 
operation

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Ropes: Report(i,j) 

output the string Ci, …, Ci + j − 1. 
Time complexity: O(j + log N) 

To report the string Ci, …, Ci + j − 1, 
output Ci, …, Ci + j − 1 by doing an in-
order traversal of T starting at the 
node that has the ith element.

16

10 24

10 6 19 3

19 5
The_quick_ brown_

fox_jumps_over_the_ lazy_

dog



Comparison: Ropes -vs- Strings (from Wikipedia) 
Rope Advantages:  
	•	 Ropes enable much faster insertion and deletion of text than monolithic string 
arrays, on which operations have time complexity O(n). 
	•	 Ropes don't require O(n) extra memory when operated upon (arrays need that 
for copying operations) 
	•	 Ropes don't require large contiguous memory spaces. 
	•	 If only nondestructive versions of operations are used, rope is a persistent data 
structure. For the text editing program example, this leads to an easy support for 
multiple undo levels.



Comparison: Ropes -vs- Strings (from Wikipedia) 
Rope Disadvantages:  
	•	 Greater overall space usage when not being operated on, mainly to store 
parent nodes. There is a trade-off between how much of the total memory is such 
overhead and how long pieces of data are being processed as strings; note that 
the strings in example figures above are unrealistically short for modern 
architectures. The overhead is always O(n), but the constant can be made 
arbitrarily small. 
	•	 Increase in time to manage the extra storage 
	•	 Increased complexity of source code; greater risk for bugs


