
Wednesday, August 16, 2017

Programming Abstractions

Summer 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 19

CS 106B
Lecture 28: Different
Languages

Today's Topics
•Logistics
•Final Exam prep online: http://web.stanford.edu/class/cs106b/handouts/final.html
•Mini-review session on Inheritance: STLC 111, 7:30pm, Wednesday
•Final Review Session: STLC 111, 6:30-7:30pm, Thursday August 17th
•Final exam is on Saturday, August 19th at 8:30am — I need a good list of students who will
need power strip access; please fill out the survey on Piazza: https://piazza.com/class/
j44l3eyaz006uz

•Different Languages You Might Like
•PDF for code: http://web.stanford.edu/class/cs106b/lectures/28-DifferentLanguages/code/
handout.pdf

•Fun Languages
•Python
•Javascript and D3
•Haskell
•COBOL
•Obfuscated C
•Quines

http://web.stanford.edu/class/cs106b/handouts/final.html
https://piazza.com/class/j44l3eyaz006uz
https://piazza.com/class/j44l3eyaz006uz
http://web.stanford.edu/class/cs106b/lectures/28-DifferentLanguages/code/handout.pdf
http://web.stanford.edu/class/cs106b/lectures/28-DifferentLanguages/code/handout.pdf

Different Languages

There are literally hundreds of programming languages.

You probably have never heard of most of them, and you will almost certainly never
program in most of them.

https://en.wikipedia.org/wiki/List_of_programming_languages

https://en.wikipedia.org/wiki/List_of_programming_languages

Some fun examples

There are also a number of "Esoteric Programming Languages," which can be fun:

https://en.wikipedia.org/wiki/Esoteric_programming_language

https://en.wikipedia.org/wiki/Esoteric_programming_language

Some fun examples: LOLCODE

HAI 1.0
CAN HAS STDIO?
I HAS A VAR
IM IN YR LOOP
 UP VAR!!1
 VISIBLE VAR
 IZ VAR BIGGER THAN 10? KTHX
IM OUTTA YR LOOP
KTHXBYE

https://en.wikipedia.org/wiki/LOLCODE

https://en.wikipedia.org/wiki/LOLCODE

Some fun examples: Piet
A "Hello World" program in Piet

Piet is a language designed by David Morgan-
Mar, whose programs are bitmaps that look like
abstract art. The compilation is guided by a
"pointer" that moves around the image, from one
continuous coloured region to the next.
Procedures are carried through when the pointer
exits a region.

Source: https://en.wikipedia.org/wiki/Esoteric_programming_language#Piet

https://en.wikipedia.org/wiki/Esoteric_programming_language#Piet

Some fun examples: Whitespace

A "Hello World" program in Whitespace

This is a commented Whitespace program
that simply prints "Hello, world!", where
each Space, Tab, or Linefeed character is
preceded by the identifying comment "S",
"T", or "L", respectively:

Source: https://en.wikipedia.org/wiki/Whitespace_(programming_language)

S S S T S S T S S S L
T L
S S S S S T T S S T S T L
T L
S S S S S T T S T T S S L
T L
S S S S S T T S T T S S L
T L
S S S S S T T S T T T T L
T L
S S S S S T S T T S S L
T L
S S S S S T S S S S S L
T L
S S S S S T T T S T T T L
T L
S S S S S T T S T T T T L
T L
S S S S S T T T S S T S L
T L
S S S S S T T S T T S S L
T L
S S S S S T T S S T S S L
T L
S S S S S T S S S S T L
T L
S S L
L
L

https://en.wikipedia.org/wiki/Hello_world_program
https://en.wikipedia.org/wiki/Whitespace_(programming_language)
https://en.wikipedia.org/wiki/Esoteric_programming_language#Piet

Python
Python is an extremely readable programming language (it looks like psuedocode),

and is really simple to learn (though it takes a long time to learn it really well!)

In Python, whitespace matters, but that means that curly braces aren't necessary:

for i in range(10):
 print("Hello " + str(i))

One cool feature of Python is that it has a "REPL" that you can simply open up and
type on. Let's try it!

Python

Python has some neat built-in functionality, such as arbitrary length integers:

>>> 2 ** 2 ** 2 ** 2 ** 2

The "**" means exponent. How many digits is this going to be?

Python

Python has some neat built-in functionality, such as arbitrary length integers:

>>> len(str(2 ** 2 ** 2 ** 2 ** 2))
19729

The "**" means exponent. How many digits is this going to be?

Python
Python has built-in lists, dictionaries (hash tables), sets, queues, psuedo-random

number generators, etc., and it is also object oriented and has classes.

You can return multiple values in Python:
import math
def quadEqSolver(a,b,c):
 inner = math.sqrt(b * b - 4 * a * c)
 return (-b + inner) / (2 * a), (-b - inner) / (2 * a)

FizzBuzz

A famous easy coding interview question is "FizzBuzz," defined as follows:

Write a program that prints the numbers from 1 to 100.
But for multiples of three print “Fizz” instead of the

number and for the multiples of five print “Buzz”. For
numbers which are multiples of both three and five

print “FizzBuzz”.

We can write this relatively easily in most languages, so we'll do it in the different
languages we look at today.

C++ FizzBuzz

#include <iostream>
using namespace std;
int main ()
{
 for(int i = 1; i <= 100; i++)
 {
 if(i % 3 == 0 && i % 5 == 0) {
 cout << "FizzBuzz" << endl;
 } else if(i % 3 == 0) {
 cout << "Fizz" << endl;
 } else if(i % 5 == 0) {
 cout << "Buzz" << endl;
 } else {
 cout << i << endl;
 }
 }
 return 0;
}

Output:
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz
13
14
FizzBuzz
16
17
Fizz

etc.

Python FizzBuzz

for i in range(1,100):
 if i % 3 == 0 and i % 5 == 0:
 print("FizzBuzz")
 elif i % 3 == 0:
 print("Fizz")
 elif i % 5 == 0:
 print("Buzz")
 else:
 print(i)

Output:
$ python fizzBuzz.py
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz
13
14
FizzBuzz
16
17
Fizz

etc.

Python

If you are going to learn one more
language, learn Python — you won't be

disappointed!

>>> import this

>>> import antigravity

JavaScript and D3

JavaScript has become the "language of the Web"

It is not the best language, but it is a pretty good one (but, give the Author,
Brendan Each, a break — he created it in 10 days!)

JavaScript and Java are completely different languages, although they both share
"C-like syntax". So, for loops look very familiar:

for (var i=0; i < 10; i++) {
 console.log("Hello " + i);
}

You already have JavaScript installed and ready to go
— it's built into the browser. Let's play!

JavaScript FizzBuzz
function fizzBuzz() {
 for(var i = 1; i <= 100; i++)
 {
 if(i % 3 == 0 && i % 5 == 0) {
 console.log("FizzBuzz");
 } else if(i % 3 == 0) {
 console.log("Fizz");
 } else if(i % 5 == 0) {
 console.log("Buzz");
 } else {
 console.log(i);
 }
 }
}

Looks a lot like C++!

JavaScript syntax is basically the same, but the
model is much different!

JavaScript FizzBuzz, output to Web Page

<!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript"
 src="fizzBuzz_web.js"></script>
 </head>
 <body onload=fizzBuzz()>
 <div id="fizzBuzzOutput">
 This is the default text.
 </div>
 </body>
</html>

FizzBuzz.html:
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 for(var i = 1; i <= 100; i++)
 {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 }
 return 0;
}

fizzBuzz_web.js:

JavaScript FizzBuzz, output to Web Page

<!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript"
 src="fizzBuzz_web.js"></script>
 </head>
 <body onload=fizzBuzz()>
 <div id="fizzBuzzOutput">
 This is the default text.
 </div>
 </body>
</html>

FizzBuzz.html:
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 for(var i = 1; i <= 100; i++)
 {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 }
 return 0;
}

fizzBuzz_web.js:

One problem…we want our websites to be responsive, and we don't like loops!

JavaScript FizzBuzz, output to Web Page
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 var i = 1;
 var timer = setInterval(function() {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 i++;
 if (i == 100) {
 // stop the timer
 clearInterval(timer);
 }
 },1);
 return 0;
}

fizzBuzz_web_noLoop.js:

Set a timer for each iteration

Fires every millisecond

JavaScript FizzBuzz, output to Web Page
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 var i = 1;
 var timer = setInterval(function() {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 i++;
 if (i == 100) {
 // stop the timer
 clearInterval(timer);
 }
 },1);
 return 0;
}

fizzBuzz_web_noLoop.js:

This is called an
"anonymous function",

and it is what gets
called every time the

timer fires.

It takes some getting
used to!

JavaScript FizzBuzz, output to Web Page
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 var i = 1;
 var timer = setInterval(function() {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 i++;
 if (i == 100) {
 // stop the timer
 clearInterval(timer);
 }
 },1);
 return 0;
}

fizzBuzz_web_noLoop.js:

Increment i to keep
track of the iteration

count

JavaScript FizzBuzz, output to Web Page
function fizzBuzz() {
 fb_div = document.getElementById('fizzBuzzOutput');

 // clear current contents
 fb_div.innerHTML = ""

 var i = 1;
 var timer = setInterval(function() {
 if(i % 3 == 0 && i % 5 == 0) {
 fb_div.innerHTML += "FizzBuzz
";
 } else if(i % 3 == 0) {
 fb_div.innerHTML += "Fizz
";
 } else if(i % 5 == 0) {
 fb_div.innerHTML += "Buzz
";
 } else {
 fb_div.innerHTML += i + "
";
 }
 i++;
 if (i == 100) {
 // stop the timer
 clearInterval(timer);
 }
 },1);
 return 0;
}

fizzBuzz_web_noLoop.js:

Stop the timer after
we reach 100

D3.js

If you are taking cs193c this quarter, you already know a bit about JavaScript, and
HTML. There are a ton of JavaScript libraries online. One of my favorites is a

JavaScript library that can make dynamic data visualizations really easily.

Let's look at some examples!

http://christopheviau.com/d3list/gallery.html

https://github.com/d3/d3/wiki/Gallery

http://christopheviau.com/d3list/gallery.html
https://github.com/d3/d3/wiki/Gallery

eclipse.js

Yesterday, I wrote a little D3 animation to show the path of the Solar Eclipse that is
happening next week.

I found the data online at https://eclipse.gsfc.nasa.gov/SEpath/SEpath2001/
SE2017Aug21Tpath.html

I did a bit of work to make the data readable for my program (latitude and longitude
for the center of the path and the northern and southern limits), and then grabbed

a map.

The hardest part was translating the lat/long values onto the map, and it isn't
perfect, but the math wasn't too hard.

http://stanford.edu/~cgregg/eclipse/

https://eclipse.gsfc.nasa.gov/SEpath/SEpath2001/SE2017Aug21Tpath.html
https://eclipse.gsfc.nasa.gov/SEpath/SEpath2001/SE2017Aug21Tpath.html
http://stanford.edu/~cgregg/eclipse/

Haskell

Haskell is a completely different way of programming than
you are used to (though not as different as some of the

esoteric languages)

Haskell is a "purely functional" programming language,
meaning that all computation is the result of evaluating

mathematical functions. There is no concept of "mutable"
data in Haskell, and all functions only depend on their

arguments and no other information.

The book Learn You a Haskell for Great Good! is a terrific
way to learn the language!

LYaHfGG

Haskell Example (from LYaHfGG)

doubleMe x = x + x

doubleUs x y = x*2 + y*2

doubleSmallNumber x = if x > 100
 then x
 else x*2

sample.hs:

Functions are defined simply. If statements look a little different, too.

Haskell Example (from LYaHfGG)

$ ghci
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
Prelude> :set prompt "ghci> "
ghci> :l sample.hs
[1 of 1] Compiling Main (sample.hs, interpreted)
Ok, modules loaded: Main.
ghci> doubleMe 4
8
ghci> doubleMe 8.2
16.4
ghci> doubleUs 5 4
18
ghci> doubleSmallNumber 12
24
ghci> doubleSmallNumber 120
120
ghci>

doubleMe x = x + x

doubleUs x y = x*2 + y*2

doubleSmallNumber x = if x > 100
 then x
 else x*2

Sample functions (sample.hs)

Testing the functions

Lists in Haskell (from LYaHfGG)

Lists in Haskell (from LYaHfGG)

How do you think Haskell stores its lists?

Lists in Haskell (from LYaHfGG)

How do you think Haskell stores its lists?
As linked lists!

Lists operations in Haskell (from LYaHfGG)

Haskell FizzBuzz

module Main where

main :: IO ()
main = printAll $ map fizzBuzz [1..100]
 where
 printAll [] = return ()
 printAll (x:xs) = putStrLn x >> printAll xs

fizzBuzz :: Integer -> String
fizzBuzz n | n `mod` 15 == 0 = "FizzBuzz"
 | n `mod` 5 == 0 = "Fizz"
 | n `mod` 3 == 0 = "Buzz"
 | otherwise = show n

Doesn't look like C++!

Haskell takes some getting used to…

COBOL

Someone asked if we could talk a bit about COBOL. I had to look up how to run
COBOL programs, but it isn't too difficult:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. HELLO-WORLD.
 *> SIMPLE HELLO WORLD PROGRAM
 PROCEDURE DIVISION.
 DISPLAY 'HELLO, WORLD!'.
 STOP RUN.

https://www.youtube.com/watch?v=PT_DnxmyuhA

It is really old-school: all
UPPERCASE letters

It was made to be "readable",
but it reminds me of this:

COBOL FizzBuzz
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FIZZ-BUZZ.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 CT PIC 999 VALUE 1.
 01 FZ PIC 999 VALUE 1.
 01 BZ PIC 999 VALUE 1.
 PROCEDURE DIVISION.
 FIZZ-BUZZ-MAIN SECTION.
 PERFORM 100 TIMES
 IF FZ = 3
 THEN IF BZ = 5
 THEN DISPLAY "FizzBuzz"
 COMPUTE BZ = 0
 ELSE DISPLAY "Fizz"
 END-IF
 COMPUTE FZ = 0
 ELSE IF BZ = 5
 THEN DISPLAY "Buzz"
 COMPUTE BZ = 0
 ELSE
 DISPLAY CT
 END-IF
 END-IF
 ADD 1 TO CT
 ADD 1 TO FZ
 ADD 1 TO BZ
 END-PERFORM
 STOP RUN.

Grace Hopper: Creator of COBOL
The Harvard Mark
I, one of the first
computers in the

world

Rear Admiral,
U.S. Navy

The first "bug" in
the computer • Hopper on Letterman: https://

www.youtube.com/watch?v=1-
vcErOPofQ

https://www.youtube.com/watch?v=1-vcErOPofQ
https://www.youtube.com/watch?v=1-vcErOPofQ
https://www.youtube.com/watch?v=1-vcErOPofQ

Obfucsated C
http://www.ioccc.org

include<stdio.h>// .IOCCC Fluid-
include <unistd.h> //2012 _Sim!_
include<complex.h> //|||| ,____. IOCCC-
define h for(x=011; 2012/*
*/-1>x ++;)b[x]//-' winner
define f(p,e) for(/*
*/p=a; e,p<r; p+=5)//
define z(e,i) f(p,p/*
*/[i]=e)f(q,w=cabs (d=*p- *q)/2- 1)if(0 <(x=1- w))p[i]+=w*///
 double complex a [97687] ,*p,*q ,*r=a, w=0,d; int x,y;char b/* ##
*/[6856]="\x1b[2J" "\x1b" "[1;1H ", *o= b, *t; int main (){/**
/for(;0<(x= getc (stdin));)w=x >10?32< x?4[/
*/*r++ =w,r]= w+1,*r =r[5]= x==35, r+=9:0 ,w-I/*
/:(x= w+2);; for(;; puts(o),o=b+ 4){z(p [1]/*
/9,2) w;z(G, 3)(d(3-p[2] -q[2]) *P+p[4]*V-/*
*/q[4] *V)/p[2];h=0 ;f(p,(t=b+10 +(x=*p *I)+/*
/80(y=*p/2),*p+=p [4]+=p [3]/10 *!p[1]))x=0/*
*/ <=x &&x<79 &&0<=y&&y<23?1[1 [*t|=8 ,t]|=4,t+=80]=1/*
*/, *t |=2:0; h=" '`-.|//,\\" "|_" "\\/\x23\n"[x/**
/%80- 9?x[b] :16];;usleep(12321) ;}return 0;}/
####
###
**###*/

https://www.youtube.com/watch?v=QMYfkOtYYlg

http://www.ioccc.org
https://www.youtube.com/watch?v=QMYfkOtYYlg

Quines

https://github.com/mame/quine-relay

https://en.wikipedia.org/wiki/Quine_(computing)

A quine is a non-empty computer program which takes no input and
produces a copy of its own source code as its only output.

https://github.com/mame/quine-relay
https://en.wikipedia.org/wiki/Quine_(computing)

LOLCODE FizzBuzz
HAI
CAN HAS STDIO?
I HAS A VAR IZ 0
IM IN YR LOOP

UPZ VAR!!1
IZ VAR BIGR THAN 100?

GTFO.
KTHX
IZ VAR LEFTOVAR 15 LIEK 0?

VISIBLE "FIZZBUZZ"
KTHX
ORLY?
IZ VAR LEFTOVAR 5 LIEK 0?

VISIBLE "BUZZ"
KTHX
ORLY?
IZ VAR LEFTOVAR 3 LIEK 0?

VISIBLE "FIZZ"
KTHX
NOWAI

VISIBLE VAR
KTHX

KTHX
KTHXBYE

References and Advanced Reading

•References:
•C++ Inheritance: https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
•C++ Polymorphism: https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

•Advanced Reading:
•http://stackoverflow.com/questions/5854581/polymorphism-in-c
•https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm
http://stackoverflow.com/questions/5854581/polymorphism-in-c
https://www.codingunit.com/cplusplus-tutorial-polymorphism-and-abstract-base-class

