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Recursion



Recursion Overview

• In order to solve a problem, solve a smaller 
version of the same problem
• In order to solve that problem, solve a smaller 

version of the same problem
• In order to solve that problem, solve a smaller 

version of the same problem
• In order to solve that problem, solve a smaller 

version of the same problem
• In order to solve that problem, solve a smaller 

version of the same problem
• …..

• “A function calling itself”



Recursion Overview

• Solving smaller versions of the same problem 
(recursive case) until we reach a version that is 
so simple, you can just do it (base case).

• Factorials: n! = n * (n-1) * (n-2) * … * 2 * 1 
n! is just n * (n-1)!

(n-1)! is just (n-1) * (n-2)!
(n-2)! is just (n-2) * (n-3)!

………
1! is just 1



Recursion Practice

This week’s section handout, Recursion #2:

Write a recursive function named sumOfSquares
that takes in an integer n and returns the sum of 
squares from 1 to n, inclusive. 
For example, sumOfSquares(3) should return 14
(12 + 22 + 32 = 14). You can assume n ≥ 1.



Recursion Practice

Base case?
What is the simplest n for which we can find the 
sumOfSquares?

ANS: n = 1
(Remember, we were allowed to assume that
n ≥ 1)

sumOfSquares(1) = 12 = 1



Recursion Practice

Recursive case?
Given integer k, what’s the input that’s just one step 
smaller? 

ANS: n = k-1

If we have sumOfSquares(k-1), how do we get 
sumOfSquares(k)?

ANS: sumOfSquares(k)
= k2 + sumOfSquares(k-1)



Recursion Practice

Solution:
int sumOfSquares(int n) {

if(n == 1) {
return 1;

} else {
return n*n + sumOfSquares(n-1);

}
}



Part A. Fractals



What is a Fractal?

• A figure that displays self-similarity on all scales 



What is a Fractal?

• Fractals are naturally recursive objects

1 big one   =   3 smaller ones



Sierpinski Triangle



Sierpinski Triangle
void drawSierpinskiTriangle(Gwindow &gw, double x, 

double y, double size, int order)

Order 1

Order 2

Order 3



Drawing equilateral triangles

void drawLine(double x1, double y1, 
double x2, double y2)

Usage à gw.drawLine(20, 20, 40, 40);

Use trig to find h!

(x1, y1) (x2, y2)

(x3, y3)



Sierpinski Triangle

Approach

• Must write recursively
• No loops, no data structures allowed
• What’s a good base case? What’s the recursive case?

• Hint: to draw the Order n triangle, you need to 
draw three smaller Order n – 1 triangles.



Sierpinski Triangle

To draw an Order nTriangle here…

…you should draw Order n-1Triangles in these places! 



Sierpinski Triangle – tips

• All triangles you draw should point downwards
• If you’re drawing any upward-pointing 

triangles, double check your approach!
• Each line in the final drawing should only 

be traced once – don’t redraw any lines!

• Don’t forget edge cases and exceptions!
• Order 0 triangle?
• Negative values for x, y, size, or order?



Mandelbrot Set



Complex Numbers
Complex numbers are of the form 

! + #$
where i is the imaginary number −1

Real axis

Imaginary axis

3,2 = 3 + 2$

Complex numbers 
can be graphed in 

the complex plane



Complex Numbers
! + #$

• Addition !% + #%$ + !& + #&$
= () + (* + +) + +* ,

• Multiplication !% + #%$ !& + #&$
= ()(* + ()+* + (*+) , − +)+*

• Absolute value ! + #$
= (* + +*

Real part Imaginary part

Add real and imaginary 
parts separately

FOIL

Distance from origin 
of complex plane



Complex Numbers
• We provide a Complex class to help you work with 

complex numbers

Function Description

Complex(double a, double b) Constructor to create a 
complex number a + bi

c.abs() Returns absolute value of c

c.real() Returns real part of c

c.imag() Returns coefficient of imaginary 
part of c

c1 + c2 Returns sum of c1 and c2

c1 * c2 Returns product of c1 and c2



Mandelbrot Set – what is it?
The set of all complex numbers ! that satisfy the 
following property:
• The function "($) = $' + ! does not diverge 

when iterated from z = 0.
• i.e. the sequence "(0), "("(0), "("(" 0 )), … 

does not diverge to infinity

When you plot all the values in the 
Mandelbrot set, it looks like this à

(black = in the set)



Mandelbrot Set – Recursion!
We can use the following recursive definition for the 
Mandelbrot Set to figure out what numbers are in it:

!"#$ = !"& + (
!) = 0, , → ∞

• !) = /
• !$ = !)& + ( = 0& + ( = 0
• !& = !$& + ( = 01 + 0
• !2 = !&& + ( = (01 + 0 )1+0
• Etc.



Mandelbrot Set – Recursion!
We can use the following recursive definition for the 
Mandelbrot Set to figure out what numbers are in it:

!"#$ = !"& + (
!) = 0, , → ∞

• If !" does not diverge after infinitely many 
iterations (or for our purposes, some large number 
like 200) , then ( is in the set.
• If !" does diverge at some point (for our purposes, 

if it exceeds 4), then ( is not in the set.



Mandelbrot Set – Prototypes

void mandelbrotSet(Gwindow &gw, double minX, double incX, 
double minY, double incY, int maxIterations, int color)

int mandelbrotSetIterations(Complex c, int maxIterations)

int mandelbrotSetIterations(Complex z, Complex c, 
int remainingIterations)



Mandelbrot Set – overall function

void mandelbrotSet(Gwindow &gw, double minX, double incX, 
double minY, double incY, int maxIterations, int color)

• minX and minY – the complex number at the upper left of 
your grid (dictates your “window”)
• Complex startingCoord = Complex(minX, minY);

• incX and incY – the increment you should move as you go 
from square to square in your grid (“resolution”)
• (row = 3, col = 5) = (minX + 5 * incX, minY + 3 * incY)

• maxIterations – the number of iterations you should try 
before determining that a number does not diverge



Mandelbrot Set – helpers

int mandelbrotSetIterations(Complex c, int maxIterations)
int mandelbrotSetIterations(Complex z, Complex c, 

int remainingIterations)                             _

• Compute the number of iterations needed to 
determine if a particular number c diverges
• Same name, different parameters (“overloaded”)
• First = wrapper function
• Returns how many iterations were needed for number c

• Second = recursive helper function
• Implements the recursive definition for the Mandelbrot Set
• Remember: z starts at 0!



Mandelbrot Set – structure

void mandelbrotSet(Gwindow &gw, double minX, double incX, 
double minY, double incY, int maxIters, int color) {

//for each pixel
Complex c = Complex(pixelX, pixelY);
numIters = mandelbrotSetIterations(c, maxIters);
//color pixel

}

int mandelbrotSetIterations(Complex c, int maxIterations) {
//call mandelbrotSetIterations

}



Mandelbrot Set – coloring

void mandelbrotSet(Gwindow &gw, double minX, double incX, 
double minY, double incY, int maxIterations, int color)

• color – determines the color of your graph

• color != 0 – set the pixel’s color to color if 
that pixel represents a number in the set

pixels[r][c] = color;



Mandelbrot Set – coloring

void mandelbrotSet(Gwindow &gw, double minX, double incX, 
double minY, double incY, int maxIterations, int color)

• color – determines the color of your graph

• color == 0 – set the pixel’s color based on 
what mandelbrotSetIterations returned 

pixels[r][c] =
palette[numIterations

% palette.size()];



Part B. Grammar 
Solver



What is a Grammar?

• A formal language is a set of words/symbols plus a 
set of rules that dictate how those symbols can be 
put together
• A grammar describes the rules for a particular 

formal language

Symbols:
S, NP,  AdjP,  V’, green, etc.
Rules:
S à NP + VP
NP à N’
N’ àAdjP + N’



What is a Grammar?

• A grammar could reflect how we understand 
grammar in the English language (or any other 
spoken language), but it doesn’t have to.
• You can make a language out of arbitrary symbols and a 

grammar out of arbitrary relationships between those 
symbols!

You could have S à NP + VP    
(Sentence à Noun Phrase + Verb Phrase)

You could also have tà n + k



Backus-Naur Form (BNF)

• A way of formatting the rules of a grammar

non-terminal1::=rule|rule|rule|…
non-terminal2::=rule|rule|rule|…

• non-terminal: a symbol that gets expanded into 
other symbols (think of this as a part of speech)
• terminal: a symbol that does not expand (i.e. it 

terminates) (think of this as a word)
• rule: a sequence of symbols that a non-terminal 

can expand to. Different possible rules are 
separated by “|” 



BNF – an example
<S>::=<NP><VP>
<NP>::=<AdjP><NP>|dog|cat
<VP>::=eats|barks|naps
<AdjP>::=good|silly|sleepy

• Start with <S>
• Follow its rule: <S> à <NP><VP>
• Take <NP>, choose a rule: <NP> à <AdjP><NP>
• Take <AdjP>, choose a rule: <AdjP> à sleepy
• Take <NP>, choose a rule: <NP> à cat

• Take <VP>, choose a rule: <VP> à barks 
• Final sentence: sleepy cat barks

All non-terminals in this 
example are surrounded 
by <>. But it does NOT 
have to be this way in all 
grammars!



Grammar Solver

Vector<string> grammarGenerate(istream &input, 
string symbol, int times)

• input – an input stream containing a grammar in 
Backus-Naur Form
• symbol – a starting symbol for each sentence to 

be generated
• times – the number of sentences to generate



Grammar Solver

Vector<string> grammarGenerate(istream &input, 
string symbol, int times)

1. Read the input file and store the grammar into 
some data structure

2. Randomly generate sentences (starting with the 
given symbol) from the grammar
• Must be done recursively!

3. Return a vector of the sentences generated



1. Reading the Input File

• Read each line of the file and store grammar in a 
Map (no recursion needed):

non-terminal1::=rule|rule|rule|…

Helpful functions from strlib.h:
• Vector<string> stringSplit(string s, 

string delimiter)
• void trim(String s)



2. Generating sentences

• Recursively generate random expressions given a 
starting symbol S.

1. If S is a terminal, then that’s it! The resulting 
expression is just S itself.

2. If S is a non-terminal, randomly select one of its 
rules R.

3. For each symbol in R, generate a random 
expression.



2. Generating sentences



Questions?



Extension:
Fractal Tree



Fractal Tree

• Draw a tree as shown below with (you guessed it) 
recursion



Fractal Tree

void drawTree(Gwindow &gw, double x, 
double y, double size, int order)



Fractal Tree

size

size/2

size/2

size/4

15°

45°


