Assignment 3

-Recursion-

Fractals
Grammar Solver

CS106B, Spring 2018
YEAH

Jennie Yang

Recursion

recursion

All Images Videos Books

About 9,960,000 results (0.58 seconds)

Did you mean: recursion

e
Recursion Overview

* In order to solve a problem, solve a smaller
version of the same problem

* In order to solve that problem, solve a smaller
version of the same problem

* In order to solve that problem, solve a smaller
version of the same problem
* In order to solve that problem, solve a smaller
version of the same problem

* In order to solve that problem, solve a smaller
version of the same problem

* “A function calling itself”

e
Recursion Overview

* Solving smaller versions of the same problem
(recursive case) until we reach a version that is
so simple, you can just do it (base case).

* Factorials:n! =n * (n-1) *(n-2) * ... *2 * |
n!is just n * (n-1)!
(n-1)!'is just (n-1) * (n-2)!
(n-2)! is just (n-2) * (n-3)!

I!is just |

e
Recursion Practice

This week’s section handout, Recursion #2:

Write a recursive function named sumOfSquares
that takes in an integer n and returns the sum of
squares from 1 to n, inclusive.

For example, sumOfSquares(3) should return 14
(12 + 22 + 32 = [4).You can assume n 2> 1.

e
Recursion Practice

Base case?

What is the simplest n for which we can find the
sumOfSquares!?

ANS:n = 1

(Remember, we were allowed to assume that
n 2 1)

sumOfSquares(l) = 12 = 1

Recursion Practice

Recursive case!?
Given integer Kk, what’s the input that’s just one step
smaller?

ANS:n = k-1

If we have sumOfSquares(k-1), how do we get
sumOfSquares(k)?

ANS: sumOfSquares (k)
= k2 + sumOfSquares(k-1)

e
Recursion Practice

Solution:

int sumOfSquares(int n) {
if(n == 1) {
return 1;

} else {
return n*n + sumOfSquares(n-1);

¥

Part A. Fractals

e
What is a Fractal?

* A figure that displays self-similarity on all scales

Ad

Ab

& F
+¥ W)
Y.

e
What is a Fractal?

* Fractals are naturally recursive objects

A
A

/ .ii'i Y

4 A
&5

Aok 55
iv AbAA viv

vi!ir "::,!e‘_‘ . £9
S.5.5 L
v &

¥,
&

| big one = 3 smaller ones

I
Sierpinski Triangle

Sierpinski Triangle

void drawSierpinskiTriangle(Gwindow &gw, double x,
double y, double size, int order)

Order |
Order 2

Drawing equilateral triangles

void drawLine(double x1, double y1,
double x2, double y2)

Usage = gw.drawlLine(20, 20, 40, 40);

(xI,yT) (x2,y2)

Use trig to find h!

LI L (x3,y3)

I
Sierpinski Triangle

Approach

* Must write recursively
* No loops, no data structures allowed
* What’s a good base case! What’s the recursive case!

* Hint: to draw the Order n triangle, you need to
draw three smaller Order n — | triangles.

I
Sierpinski Triangle

To draw an Order n Triangle here...

VY e e — —— — i\ — T —— — — —— 57
/ N ’/
D / S /
N / \ 4
S / S 4
N Y4 \ 4
A\ \ /
A\ \ /4
\\ \ A
4
\
W
\\
4
\ \ 7
AS 4
S 4
\ 4
\ 7
AS U
\\ 4
\ /
\ ’
4
4
4
/
4
4
4
7
/'
7
/I
\; 4
\)/
N //
4
\\,
N/
\4

...you should draw Order n-I Triangles in these places!

Sierpinski Triangle - tips

* All triangles you draw should point downwards
* If you'’re drawing any upward-pointing
triangles, double check your approach!

* Each line in the final drawing should only
be traced once — don’t redraw any lines!

* Don’t forget edge cases and exceptions!
* Order O triangle!?
* Negative values for x, Y, size, or order?

Mandelbrot Set

Complex Numbers

Complex numbers are of the form
a + bi

where 1 is the imaginary number v —1

A

(3,2) = 3 + 2i
o
Complex numbers /
can be graphed in < R
the complex plane Real axis

Imaginary axis

v

Complex Numbers
Real part (] -I— bl Imaginary part

* Addition (a1 + bll) + (az + bzl) Add real and imaginary
= (ay+ay) + (by + by)i parts separately

* Multiplication (a; + byi) (a, + byi)
= aq1a, + (albz + azbl)i — b1b2

FOIL

* Absolute value [(a + bi) Distance from origin

— \/aZ 1+ p2 of complex plane

I
Complex Numbers

* We provide a Complex class to help you work with
complex numbers

Fuvin " omspion

Complex(double a, double b) Constructor to create a
complex number a + bi

c.abs() Returns absolute value of c

c.real() Returns real part of c

c.imag() Returns coefficient of imaginary
part of c

cl + c2 Returns sum of cl and c2

cl * c2 Returns product of cl and c2

I
Mandelbrot Set - what is it?

The set of all complex numbers ¢ that satisfy the
following property:

* The function f(2) = z? + ¢ does not diverge
when iterated from z = 0.

* i.e. the sequence f(0), f(f(0), f(f(f(0))),...

does not diverge to infinity

When you plot all the values in the
Mandelbrot set, it looks like this =

(black = in the set)

e
Mandelbrot Set - Recursion!

We can use the following recursive definition for the
Mandelbrot Set to figure out what numbers are in it:

— 2

ZOZO,n—)OO

¢ Z0=O
c 21 =2°+c=0°4+c=c
e Z,=2z°+c=c*+c

© Z3 = 2,>+c = (c®*+c)*+c

e Etc.

e
Mandelbrot Set - Recursion!

We can use the following recursive definition for the
Mandelbrot Set to figure out what numbers are in it:

— 2

ZO=O,TL—>OO

* If |z,,| does not diverge after infinitely many

iterations (or for our purposes, some large number
like 200) ,then c is in the set.

* If |z,,| does diverge at some point (for our purposes,
if it exceeds 4), then c is not in the set.

I
Mandelbrot Set - Prototypes

void mandelbrotSet(Gwindow &gw, double minX, double incX,

double minY, double incY, int maxIterations, int color)
int mandelbrotSetIterations(Complex c, int maxIterations)

int mandelbrotSetIterations(Complex z, Complex c,

int remainingIterations)

I
Mandelbrot Set - overall function

void mandelbrotSet(Gwindow &gw, double minX, double incX,

double minY, double incY, int maxIterations, int color)

* minX and minY - the complex number at the upper left of
your grid (dictates your “window”)

 Complex startingCoord = Complex(minX, minY);

 incX and incY - the increment you should move as you go
from square to square in your grid (“resolution”)

* (row =3,col =5) = (minX + 5* incX, minY + 3 * incY)

* maxIterations — the number of iterations you should try
before determining that a number does not diverge

e
Mandelbrot Set - helpers

int mandelbrotSetIterations(Complex c, int maxIterations)
int mandelbrotSetIterations(Complex z, Complex c,

int remainingIterations)

* Compute the number of iterations needed to
determine if a particular number c diverges

* Same name, different parameters (“overloaded”)

* First = wrapper function
* Returns how many iterations were needed for number ¢

* Second = recursive helper function
* Implements the recursive definition for the Mandelbrot Set
* Remember: z starts at 0!

I
Mandelbrot Set - structure

void mandelbrotSet(Gwindow &gw, double minX, double incX,
double minY, double incY, int maxIters, int color) {
//for each pixel
Complex ¢ = Complex(pixelX, pixelY);
numIters = mandelbrotSetIterations(c, maxIters);

//color pixel

int mandelbrotSetIterations(Complex c, int maxIterations) {
//call mandelbrotSetIterations

I
Mandelbrot Set - coloring

void mandelbrotSet(Gwindow &gw, double minX, double incX,

double minY, double incY, int maxIterations, int color)

* color — determines the color of your graph

* color = @ - setthe pixel’s color to color if
that pixel represents a number in the set

pixels[r][c] = color;

I
Mandelbrot Set - coloring

void mandelbrotSet(Gwindow &gw, double minX, double incX,

double minY, double incY, int maxIterations, int color)

* color — determines the color of your graph

* color == @ - set the pixel’s color based on
what mandelbrotSetIterations returned

pixels[r][c] =
palette[numIterations
% palette.size()];

Part B. Grammar
Solver

S
/\
|]
N' V!
/\
AdjP N' V! AdvP

Adj' AdjP N' Y Adv'
| | | | |
Adj Adj' N sleep Adv
Colorless Adj ideas furiously

green

e
What is a Grammar?

* A formal language is a set of words/symbols plus a
set of rules that dictate how those symbols can be
put together

* A grammar describes the rules for a particular

formal language S
/\
NP VP
Symbols: | |
° 9 Nl VI
S, NP, AdjP, V’, green, etc. S~ P
Rules: AdjP N’ V' AdWP
S > NP +VP i Adp NV Aw
NP 9 N’ Aldj A!ﬂj' rl\l slcleep A(|jv

N = Ad]P + N’ Colc!rless A:dj idleas furil)usly

green

e
What is a Grammar?

* A grammar could reflect how we understand
grammar in the English language (or any other
spoken language), but it doesn’t have to.

* You can make a language out of arbitrary symbols and a
grammar out of arbitrary relationships between those
symbols!

You could have S = NP +VP
(Sentence =2 Noun Phrase +Verb Phrase)

You could also have > B + &

I
Backus-Naur Form (BNF)

* A way of formatting the rules of a grammar

non-terminall::=rulel|rule|rule]..
non-terminal2::=rulel|rule|rule]..

* non-terminal: a symbol that gets expanded into
other symbols (think of this as a part of speech)

* terminal: a symbol that does not expand (i.e. it
terminates) (think of this as a word)

* rule: a sequence of symbols that a non-terminal
can expand to. Different possible rules are
separated by “|”

BNF - an example

<S>} :4<NP><VP>|

<NP>|: : £<AdJP><NP>| dog

<VP>|: :=eats||barks|naps

<A jP>}:=good|silly[sleepy]

e Start with <S>
* Follow its rule: <S> =2 <NP><VP>

All non-terminals in this
example are surrounded
by <>.But it does NOT
have to be this way in all
grammars!

* Take <NP>, choose a rule:<NP> > <AdjP><NP>
* Take <AdjP>,choose a rule:<AdjP> > sleepy
* Take <NP>, choose a rule:<NP> - cat

* Take <VP>, choose a rule:<VP> - barks

* Final sentence: sleepy cat barks

e
Grammar Solver

Vector<string> grammarGenerate(istream &input,
string symbol, int times)

* input — an input stream containing a grammar in
Backus-Naur Form

* symbol —a starting symbol for each sentence to
be generated

* times — the number of sentences to generate

Grammar Solver

Vector<string> grammarGenerate(istream &input,
string symbol, int times)

|. Read the input file and store the grammar into
some data structure

2. Randomly generate sentences (starting with the
given symbol) from the grammar

* Must be done recursively!
3. Return a vector of the sentences generated

I
1. Reading the Input File

* Read each line of the file and store grammar in a
Map (no recursion needed):

non-terminall::=rulel|rule|rule]..

Helpful functions from strlib.h:
 Vector<string> stringSplit(string s,
string delimiter)

 void trim(String s)

I
2. Generating sentences

* Recursively generate random expressions given a
starting symbol S.

|. If Sis a terminal, then that’s it! The resulting
expression is just S itself.

2. If S is a non-terminal, randomly select one of its
rules R.

3. For each symbol in R, generate a random
expression.

2. Generating sentences
@:=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::a

<adjp>::=<adj>|<adj> <adjp>
<adj>: :=big|fat[lgr‘een]l[wonder'ful] fal =

<n>::=dog|cat|man|university|fathel | <> <vp>

<pn>: :=John|Jane|Sally|SpotE. Y T
<tv>

<pn>
vp>::i=<tv> <np>|<iv>
<tv>::=hit|honored|kissed|helped <dp> <adjp> <n>
<iv>::=died|collapsed|laughed|wept <adi> | [<adip>

v
<adj>
v \ 31

Fred honored the green wonderful child

<np>

Extension
Fractal Tree

e
Fractal Tree

* Draw a tree as shown below with (you guessed it)
recursion

e
Fractal Tree

void drawTree(Gwindow &gw, double X,
double y, double size, int order)

Order-1 Order-2 Order-3 Order-4 Order-5

e
Fractal Tree

size

v X
--
R

