
This	document	is	copyright	(C)	Stanford	Computer	Science,	Marty	Stepp,	Victoria	Kirst,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	11	
Exhaustive	Search	
and	Backtracking	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• New	recursive	problem-solving	techniques	

–  Exhaustive	Search	
–  Backtracking	

3

Exhaustive search
• exhaustive	search:	Exploring	every	possible	combination	from	a	set	
of	choices	or	values.	
–  often	implemented	recursively	
–  Sometimes	called	recursive	enumeration	
Applications:	
–  producing	all	permutations	of	a	set	of	values	
–  enumerating	all	possible	names,	passwords,	etc.	
–  combinatorics	and	logic	programming	

• Often	the	search	space	consists	of	many	decisions,	each	of	which	
has	several	available	choices.	
–  Example:	When	enumerating	all	5-letter	strings,	each	of	the	5	letters	is	
a	decision,	and	each	of	those	decisions	has	26	possible	choices.	

4

Exhaustive search
A	general	pseudo-code	algorithm	for	exhaustive	search:	

	
Explore(decisions):	

–  if	there	are	no	more	decisions	to	make:		Stop.	

–  else,	let's	handle	one	decision	ourselves,	and	the	rest	by	recursion.	
for	each	available	choice	C	for	this	decision:	
• Choose	C	by	modifying	parameters.	
• Explore	the	remaining	decisions	that	could	follow	C.	
• Un-choose	C	by	returning	parameters	to	original	state	(if	necessary).	

5

Exhaustive Search Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	The	

iteration	will	be	done	by	recursion.	
2.  What	are	the	choices	for	each	decision?	Do	we	need	a	for	loop?	

Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters?	

a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

Un-Choosing	
4.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	

un-modify,	or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	
were	modified?	

Base	Case	
5.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?	

6

Exercise: printAllBinary
• Write	a	recursive	function	printAllBinary	that	accepts	an	
integer	number	of	digits	and	prints	all	binary	numbers	that	have	
exactly	that	many	digits,	in	ascending	order,	one	per	line.	

– printAllBinary(2); 	printAllBinary(3);	
	

00 	000	
01 	001	
10 	010	
11 	011	
			 	100	
			 	101	
			 	110	
			 	111	

printBinary

7

printAllBinary
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	The	

iteration	will	be	done	by	recursion.	
2.  What	are	the	choices	for	each	decision?	Do	we	need	a	for	loop?	

Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	

store	our	previous	choices?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

Un-Choosing	
4.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	

un-modify,	or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	
were	modified?	

Base	Case	
5.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?	

8

printAllBinary
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	We	are	

iterating	over	characters	in	the	binary	string	
2.  What	are	the	choices	for	each	decision?	Do	we	need	a	for	loop?	Choose	0	or	1	

Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	

store	our	previous	choices?	Build	up	a	string	that	we	will	eventually	print.	
Add	the	0	or	1	to	it.	String	tracks	our	previous	choices	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	Yes	

Un-Choosing	
4.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	

un-modify,	or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	
were	modified?	If	new	strings	for	each	call,	we	don't	need	to	un-choose	

Base	Case	
5.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?	Print	the	

string	

9

printAllBinary solution
void	printAllBinary(int	numDigits)	{	
				printAllBinaryHelper(numDigits,	"");	
}	
	
void	printAllBinaryHelper(int	digits,	string	soFar)	{	
				if	(digits	==	0)	{	
								cout	<<	soFar	<<	endl;	
				}	else	{	
								printAllBinaryHelper(digits	-	1,	soFar	+	"0");	
								printAllBinaryHelper(digits	-	1,	soFar	+	"1");	
				}	
}	

10

A tree of calls
• printAllBinary(2);	

–  This	kind	of	diagram	is	called	a	call	tree	or	decision	tree.	
–  Think	of	each	call	as	a	choice	or	decision	made	by	the	algorithm:	

• Should	I	choose	0	as	the	next	digit?	
• Should	I	choose	1	as	the	next	digit?	

digits	 soFar	

2	 ""	

1	 "0"	

0	 "00"	 0	 "01"	

1	 "1"	

0	 "10"	 0	 "11"	

0	 1	

0	 1	 0	 1	

11

The base case
void	printAllBinaryHelper(int	digits,	string	soFar)	{	
				if	(digits	==	0)	{	
								cout	<<	soFar	<<	endl;	
				}	else	{	
								printAllBinaryHelper(digits	-	1,	soFar	+	"0");	
								printAllBinaryHelper(digits	-	1,	soFar	+	"1");	
				}	
}	
	

–  The	base	case	is	where	the	code	stops	after	doing	its	work.	
• pAB(3)	->	pAB(2)	->	pAB(1)	->	pAB(0)	

–  Each	call	should	keep	track	of	the	work	it	has	done.	

–  Base	case	should	print	the	result	of	the	work	done	by	prior	calls.	
• Work	is	kept	track	of	in	some	variable(s)		-	in	this	case,			string	soFar.	

12

Exercise: printDecimal
• Write	a	recursive	function	printDecimal	that	accepts	an	integer	
number	of	digits	and	prints	all	base-10	numbers	that	have	exactly	
that	many	digits,	in	ascending	order,	one	per	line.	

– printDecimal(2); 	printDecimal(3);	
	

00 	000	
01 	001	
02 	002	
.. 	...	
98			 	997	
99			 	998	
			 	999	
	

– Use	recursion.	*	

printDecimal

13

printDecimal
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	The	

iteration	will	be	done	by	recursion.	
2.  What	are	the	choices	for	each	decision?	Do	we	need	a	for	loop?	

Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	

store	our	previous	choices?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

Un-Choosing	
4.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	

un-modify,	or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	
were	modified?	

Base	Case	
5.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?	

14

printDecimal solution
void	printDecimal(int	digits)	{	
				printDecimalHelper(digits,	"");	
}	
	
void	printDecimalHelper(int	digits,	string	soFar)	{	
				if	(digits	==	0)	{	
								cout	<<	soFar	<<	endl;	
				}	else	{	
								for	(int	i	=	0;	i	<	10;	i++)	{	
												printDecimalHelper(digits	-	1,	soFar	+		
																															integerToString(i));	
								}	
				}	
}	

– Observation:	When	the	set	of	digit	choices	available	is	large,	using	a	
loop	to	enumerate	them	avoids	redundancy.		(This	is	okay!)	

– Note:	Loop	over	choices,	not	decisions	

15

Announcements

• Homework	3	due	on	Wednesday	at	5PM	
• Shreya	will	be	guest-lecturing	on	Monday	

– My	office	hours	will	be	cancelled	that	day	(still	available	via	email)	
• Midterm	Review	Session	on	Tuesday,	July	24,	from	7-9PM	in	Gates	
B01	

	

16

Backtracking
• backtracking:	Finding	solution(s)	by	trying	all	possible	paths	and	
then	abandoning	them	if	they	are	not	suitable.	

–  a	"brute	force"	algorithmic	technique		(tries	all	paths)	
–  often	implemented	recursively	
–  Could	involve	looking	for	one	solution	

• 	If	any	of	the	paths	found	a	solution,	a	solution	exists!	If	none	find	a	
solution,	no	solution	exists	

–  Could	involve	finding	all	solutions	
–  Idea:	it's	exhaustive	search	with	conditions	
Applications:	
–  parsing	languages	
–  games:	anagrams,	crosswords,	word	jumbles,	8	queens,	sudoku	
–  combinatorics	and	logic	programming	
–  escaping	from	a	maze	

17

Backtracking: One Solution
A	general	pseudo-code	algorithm	for	backtracking	problems	

searching	for	one	solution	
Backtrack(decisions):	

–  if	there	are	no	more	decisions	to	make:	
• if	our	current	solution	is	valid,	return	true	
• else,	return	false	

–  else,	let's	handle	one	decision	ourselves,	and	the	rest	by	recursion.	
for	each	available	valid	choice	C	for	this	decision:	
• Choose	C	by	modifying	parameters.	
• Explore	the	remaining	decisions	that	could	follow	C.	If	any	of	them	find	a	
solution,	return	true	

• Un-choose	C	by	returning	parameters	to	original	state	(if	necessary).	
–  If	no	solutions	were	found,	return	false	

18

Backtracking: All Solutions
A	general	pseudo-code	algorithm	for	backtracking	problems	

searching	for	all	solutions	
Backtrack(decisions):	

–  if	there	are	no	more	decisions	to	make:	
• if	our	current	solution	is	valid,	add	it	to	our	list	of	found	solutions	
• else,	do	nothing	or	return	

–  else,	let's	handle	one	decision	ourselves,	and	the	rest	by	recursion.	
for	each	available	valid	choice	C	for	this	decision:	
• Choose	C	by	modifying	parameters.	
• Explore	the	remaining	decisions	that	could	follow	C.	Keep	track	of	which	
solutions	the	recursive	calls	find.	

• Un-choose	C	by	returning	parameters	to	original	state	(if	necessary).		
–  Return	the	list	of	solutions	found	by	all	the	helper	recursive	calls.	

19

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

4.  How	should	we	restrict	our	choices	to	be	valid?	
5.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
6.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
7.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
8.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
9.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

20

Exercise: Dice roll sum
• Write	a	function	diceSum	that	accepts	two	integer	parameters:	a	
number	of	dice	to	roll,	and	a	desired	sum	of	all	die	values.		Output	
all	combinations	of	die	values	that	add	up	to	exactly	that	sum.	

	diceSum(2,	7); 	diceSum(3,	7);	
	 {1,	1,	5}	

{1,	2,	4}	
{1,	3,	3}	
{1,	4,	2}	
{1,	5,	1}	
{2,	1,	4}	
{2,	2,	3}	
{2,	3,	2}	
{2,	4,	1}	
{3,	1,	3}	
{3,	2,	2}	
{3,	3,	1}	
{4,	1,	2}	
{4,	2,	1}	
{5,	1,	1}	

{1,	6}	
{2,	5}	
{3,	4}	
{4,	3}	
{5,	2}	
{6,	1}	
	

diceSum

21

Dice Roll Sum
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
3.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

4.  How	should	we	restrict	our	choices	to	be	valid?	
5.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
6.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
7.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
8.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
9.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

22

Easier: Dice rolls
• Suggestion:	First	just	output	all	possible	combinations	of	values	
that	could	appear	on	the	dice.	

• This	is	just	exhaustive	search!	
•  In	general,	starting	with	exhaustive	search	and	then	adding	
conditions	is	not	a	bad	idea	

 diceSum(2,	7); 	diceSum(3,	7);	
	

	
	
	
	
	
	
	

{1,	1}	
{1,	2}	
{1,	3}	
{1,	4}	
{1,	5}	
{1,	6}	
{2,	1}	
{2,	2}	
{2,	3}	
{2,	4}	
{2,	5}	
{2,	6}	

{3,	1}	
{3,	2}	
{3,	3}	
{3,	4}	
{3,	5}	
{3,	6}	
{4,	1}	
{4,	2}	
{4,	3}	
{4,	4}	
{4,	5}	
{4,	6}	

{5,	1}	
{5,	2}	
{5,	3}	
{5,	4}	
{5,	5}	
{5,	6}	
{6,	1}	
{6,	2}	
{6,	3}	
{6,	4}	
{6,	5}	
{6,	6}	

{1,	1,	1}	
{1,	1,	2}	
{1,	1,	3}	
{1,	1,	4}	
{1,	1,	5}	
{1,	1,	6}	
{1,	2,	1}	
{1,	2,	2}	
			...	
{6,	6,	4}	
{6,	6,	5}	
{6,	6,	6}	
	

diceRoll

23

A decision tree
chosen	 available	

-	 4	dice	

1	 3	dice	

1,	1	 2	dice	

1,	1,	1	 1	die	

1,	1,	1,	1	

1,	2	 2	dice	 1,	3	 2	dice	 1,	4	 2	dice	

2	 3	dice	

1,	1,	2	 1	die	 1,	1,	3	 1	die	

1,	1,	1,	2	 1,	1,	3,	1	 1,	1,	3,	2	

1,	4,	1	 1	die	 ...
... ...

...

... ...
... ...

value	for	first	die?	

value	for	second	die?	

value	for	third	die?	

diceSum(4,	7);	

24

Initial solution
void	diceSum(int	dice,	int	desiredSum)	{	
				Vector<int>	chosen;	
				diceSumHelper(dice,	desiredSum,	chosen);	
}	
	
void	diceSumHelper(int	dice,	int	desiredSum,	Vector<int>&	chosen)	{	
				if	(dice	==	0)	{	
								if	(sumAll(chosen)	==	desiredSum)	{	
												cout	<<	chosen	<<	endl;																								//	base	case	
								}	
				}	else	{	
								for	(int	i	=	1;	i	<=	6;	i++)	{	
												chosen.add(i);																																	//	choose	
												diceSumHelper(dice	-	1,	desiredSum,	chosen);			//	explore	
												chosen.remove(chosen.size()	-	1);														//	un-choose	
								}	
				}	
}	
	
int	sumAll(const	Vector<int>&	v)	{			//	adds	the	values	in	given	vector	
				int	sum	=	0;	
				for	(int	k	:	v)	{	sum	+=	k;	}	
				return	sum;	
}	

25

Wasteful decision tree
chosen	 available	 desired	sum	

-	 3	dice	 5	

1	 2	dice	

1,	1	 1	die	

1,	1,	1	

1,	2	 1	die	 1,	3	 1	die	 1,	4	 1	die	

6	 2	dice	

...

2	 2	dice	 3	 2	dice	 4	 2	dice	 5	 2	dice	

1,	5	 1	die	 1,	6	 1	die	

1,	1,	2	 1,	1,	3	 1,	1,	4	 1,	1,	5	 1,	1,	6	

1,	6,	1	 1,	6,	2	

...

diceSum(3,	5);	

26

Optimizations
• We	need	not	visit	every	branch	of	the	decision	tree.	

–  Some	branches	are	clearly	not	going	to	lead	to	success.	
– We	can	preemptively	stop,	or	prune,	these	branches.	

•  Inefficiencies	in	our	dice	sum	algorithm:	
–  Sometimes	the	current	sum	is	already	too	high.	

• (Even	rolling	1	for	all	remaining	dice	would	exceed	the	desired	sum.)	

–  Sometimes	the	current	sum	is	already	too	low.	
• (Even	rolling	6	for	all	remaining	dice	would	exceed	the	desired	sum.)	

–  The	code	must	re-compute	the	sum	many	times.	
• (1+1+1	=	...,	1+1+2	=	...,	1+1+3	=	...,	1+1+4	=	...,	...)	

27

diceSum solution
void	diceSum(int	dice,	int	desiredSum)	{	
				Vector<int>	chosen;	
				diceSumHelper(dice,	0,	desiredSum,	chosen);	
}	
	
void	diceSumHelper(int	dice,	int	sum,	int	desiredSum,	Vector<int>&	chosen)	{	
				if	(dice	==	0)	{	
								if	(sum	==	desiredSum)	{	
												cout	<<	chosen	<<	endl;															//	solution	found	base	case	
								}	
				}	else	if	(sum	+	1*dice	>	desiredSum										//	invalid	state	base	case	
												||	sum	+	6*dice	<	desiredSum)	{	
												return;	
				}	else	{		
								for	(int	i	=	1;	i	<=	6;	i++)	{	
												chosen.add(i);																																								//	choose	
												diceSumHelper(dice	-	1,	sum	+	i,	desiredSum,	chosen);	//	explore	
												chosen.remove(chosen.size()	-	1);																		//	un-choose	
								}	
				}	
}	

28

A Twist
• How	would	you	modify	diceSum	so	that	it	prints	only	unique	
combinations	of	dice,	ignoring	order?	
–  (e.g.	don't	print	both	{1,	1,	5}	and	{1,	5,	1})	

	diceSum2(2,	7); 	diceSum2(3,	7);	

{1,	1,	5}	
{1,	2,	4}	
{1,	3,	3}	
{1,	4,	2}	
{1,	5,	1}	
{2,	1,	4}	
{2,	2,	3}	
{2,	3,	2}	
{2,	4,	1}	
{3,	1,	3}	
{3,	2,	2}	
{3,	3,	1}	
{4,	1,	2}	
{4,	2,	1}	
{5,	1,	1}	

{1,	6}	
{2,	5}	
{3,	4}	
{4,	3}	
{5,	2}	
{6,	1}	
	

