CS 106B, Lecture 11 Exhaustive Search and Backtracking

Plan for Today

- New recursive problem-solving techniques
- Exhaustive Search
- Backtracking

Exhaustive search

- exhaustive search: Exploring every possible combination from a set of choices or values.
- often implemented recursively
- Sometimes called recursive enumeration

Applications:

- producing all permutations of a set of values
- enumerating all possible names, passwords, etc.
- combinatorics and logic programming
- Often the search space consists of many decisions, each of which has several available choices.
- Example: When enumerating all 5-letter strings, each of the 5 letters is a decision, and each of those decisions has 26 possible choices.

Exhaustive search

A general pseudo-code algorithm for exhaustive search:

Explore(decisions):

- if there are no more decisions to make: Stop.
- else, let's handle one decision ourselves, and the rest by recursion. for each available choice C for this decision:
- Choose C by modifying parameters.
- Explore the remaining decisions that could follow C.
- Un-choose C by returning parameters to original state (if necessary).

Exhaustive Search Model

Choosing

1. We generally iterate over decisions. What are we iterating over here? The iteration will be done by recursion.
2. What are the choices for each decision? Do we need a for loop?

Exploring
3. How can we represent that choice? How should we modify the parameters?
a) Do we need to use a wrapper due to extra parameters?

Un-Choosing
4. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified?

Base Case

5. What should we do in the base case when we're out of decisions?

Exercise: printAllBinary

- Write a recursive function printAllBinary that accepts an integer number of digits and prints all binary numbers that have exactly that many digits, in ascending order, one per line.

- printAllBinary(2);	printAllBinary (3);
00	000
01	001
10	010
11	011
	100
	101
	110
	111

printAllBinary

Choosing

1. We generally iterate over decisions. What are we iterating over here? The iteration will be done by recursion.
2. What are the choices for each decision? Do we need a for loop?

Exploring
3. How can we represent that choice? How should we modify the parameters and store our previous choices?
a) Do we need to use a wrapper due to extra parameters?

Un-Choosing

4. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified?

Base Case

5. What should we do in the base case when we're out of decisions?

printAllBinary

Choosing

1. We generally iterate over decisions. What are we iterating over here? We are iterating over characters in the binary string
2. What are the choices for each decision? Do we need a for loop? Choose $\mathbf{0}$ or $\mathbf{1}$

Exploring
3. How can we represent that choice? How should we modify the parameters and store our previous choices? Build up a string that we will eventually print. Add the 0 or 1 to it. String tracks our previous choices
a) Do we need to use a wrapper due to extra parameters? Yes

Un-Choosing
4. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified? If new strings for each call, we don't need to un-choose

Base Case

5. What should we do in the base case when we're out of decisions? Print the string

printAllBinary solution

```
void printAllBinary(int numDigits) {
    printAllBinaryHelper(numDigits, "");
}
void printAllBinaryHelper(int digits, string soFar) {
    if (digits == 0) {
        cout << soFar << endl;
    } else {
        printAllBinaryHelper(digits - 1, soFar + "0");
        printAllBinaryHelper(digits - 1, soFar + "1");
    }
}
```


A tree of calls

- printAllBinary(2);

- This kind of diagram is called a call tree or decision tree.
- Think of each call as a choice or decision made by the algorithm:
- Should I choose 0 as the next digit?
- Should I choose 1 as the next digit?

The base case

```
void printAllBinaryHelper(int digits, string soFar) {
    if (digits == 0) {
        cout << soFar << endl;
    } else {
        printAllBinaryHelper(digits - 1, soFar + "0");
        printAllBinaryHelper(digits - 1, soFar + "1");
    }
}
```

- The base case is where the code stops after doing its work.
- $\mathrm{pAB}(3)->\mathrm{pAB}(2)->\mathrm{pAB}(1)->\mathrm{pAB}(0)$
- Each call should keep track of the work it has done.
- Base case should print the result of the work done by prior calls.
- Work is kept track of in some variable(s) - in this case, string soFar.

Exercise: printDecimal

- Write a recursive function printDecimal that accepts an integer number of digits and prints all base-10 numbers that have exactly that many digits, in ascending order, one per line.

- printDecimal(2);	printDecimal(3);
00	000
01	001
02	002
\ldots	\ldots
98	997
99	998
	999

- Use recursion. *

printDecimal

Choosing

1. We generally iterate over decisions. What are we iterating over here? The iteration will be done by recursion.
2. What are the choices for each decision? Do we need a for loop?

Exploring
3. How can we represent that choice? How should we modify the parameters store our previous choices?
a) Do we need to use a wrapper due to extra parameters?

Un-Choosing

4. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified?

Base Case

5. What should we do in the base case when we're out of decisions?

printDecimal solution

```
void printDecimal(int digits) {
    printDecimalHelper(digits, "");
}
void printDecimalHelper(int digits, string soFar) {
    if (digits == 0) {
        cout << soFar << endl;
    } else {
        for (int i = 0; i < 10; i++) {
                printDecimalHelper(digits - 1, soFar +
                        integerToString(i));
            }
        }
}
```

- Observation: When the set of digit choices available is large, using a loop to enumerate them avoids redundancy. (This is okay!)
- Note: Loop over choices, not decisions

Announcements

- Homework 3 due on Wednesday at 5PM
- Shreya will be guest-lecturing on Monday
- My office hours will be cancelled that day (still available via email)
- Midterm Review Session on Tuesday, July 24, from 7-9PM in Gates B01

Game of Life Grade Distribution

Backtracking

- backtracking: Finding solution(s) by trying all possible paths and then abandoning them if they are not suitable.
- a "brute force" algorithmic technique (tries all paths)
- often implemented recursively
- Could involve looking for one solution
- If any of the paths found a solution, a solution exists! If none find a solution, no solution exists
- Could involve finding all solutions
- Idea: it's exhaustive search with conditions

Applications:

- parsing languages
- games: anagrams, crosswords, word jumbles, 8 queens, sudoku
- combinatorics and logic programming
- escaping from a maze

Backtracking: One Solution

A general pseudo-code algorithm for backtracking problems searching for one solution

Backtrack(decisions):

- if there are no more decisions to make:
- if our current solution is valid, return true
- else, return false
- else, let's handle one decision ourselves, and the rest by recursion. for each available valid choice C for this decision:
- Choose C by modifying parameters.
- Explore the remaining decisions that could follow C. If any of them find a solution, return true
- Un-choose C by returning parameters to original state (if necessary).
- If no solutions were found, return false

Backtracking: All Solutions

A general pseudo-code algorithm for backtracking problems searching for all solutions

Backtrack(decisions):

- if there are no more decisions to make:
- if our current solution is valid, add it to our list of found solutions
- else, do nothing or return
- else, let's handle one decision ourselves, and the rest by recursion. for each available valid choice C for this decision:
- Choose C by modifying parameters.
- Explore the remaining decisions that could follow C. Keep track of which solutions the recursive calls find.
- Un-choose C by returning parameters to original state (if necessary).
- Return the list of solutions found by all the helper recursive calls.

Backtracking Model

Choosing

1. We generally iterate over decisions. What are we iterating over here? What are the choices for each decision? Do we need a for loop?

Exploring

3. How can we represent that choice? How should we modify the parameters and store our previous choices (avoiding arms-length recursion)?
a) Do we need to use a wrapper due to extra parameters?
4. How should we restrict our choices to be valid?
5. How should we use the return value of the recursive calls? Are we looking for all solutions or just one?

Un-choosing

6. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified?

Base Case

7. What should we do in the base case when we're out of decisions (usually return true)?
8. Is there a case for when there aren't any valid choices left or a "bad" state is reached (usually return false)?
9. Are the base cases ordered properly? Are we avoiding arms-length recursion?

Exercise: Dice roll sum

- Write a function diceSum that accepts two integer parameters: a number of dice to roll, and a desired sum of all die values. Output all combinations of die values that add up to exactly that sum.

$$
\begin{aligned}
& \text { diceSum(2, 7); } \\
& \{1,6\} \\
& \{2,5\} \\
& \{3,4\} \\
& \{4,3\} \\
& \{5,2\} \\
& \{6,1\}
\end{aligned}
$$

Dice Roll Sum

Choosing

1. We generally iterate over decisions. What are we iterating over here? What are the choices for each decision? Do we need a for loop?

Exploring

3. How can we represent that choice? How should we modify the parameters and store our previous choices (avoiding arms-length recursion)?
a) Do we need to use a wrapper due to extra parameters?
4. How should we restrict our choices to be valid?
5. How should we use the return value of the recursive calls? Are we looking for all solutions or just one?

Un-choosing

6. How do we un-modify the parameters from step 3? Do we need to explicitly un-modify, or are they copied? Are they un-modified at the same level as they were modified?

Base Case

7. What should we do in the base case when we're out of decisions (usually return true)?
8. Is there a case for when there aren't any valid choices left or a "bad" state is reached (usually return false)?
9. Are the base cases ordered properly? Are we avoiding arms-length recursion?

Easier: Dice rolls

- Suggestion: First just output all possible combinations of values that could appear on the dice.
- This is just exhaustive search!
- In general, starting with exhaustive search and then adding conditions is not a bad idea

diceS	(2, 7)			Sum (3,
$\{1,1\}$	$\{3,1\}$	$\{5,1\}$		$\{1,1,1\}$
$\{1,2\}$	$\{3,2\}$	$\{5,2\}$		$\{1,1,2\}$
$\{1,3\}$	$\{3,3\}$	$\{5,3\}$		$\{1,1,3\}$
$\{1,4\}$	$\{3,4\}$	$\{5,4\}$,	$\{1,1,4\}$
$\{1,5\}$	$\{3,5\}$	$\{5,5\}$	${ }^{1} 1$	$\{1,1,5\}$
$\{1,6\}$	$\{3,6\}$	$\{5,6\}$	\bigcirc	$\{1,1,6\}$
$\{2,1\}$	$\{4,1\}$	$\{6,1\}$		$\{1,2,1\}$
$\{2,2\}$	$\{4,2\}$	$\{6,2\}$		$\{1,2,2\}$
$\{2,3\}$	$\{4,3\}$	$\{6,3\}$		
$\{2,4\}$	$\{4,4\}$	$\{6,4\}$		$\{6,6,4\}$
$\{2,5\}$	$\{4,5\}$	$\{6,5\}$		$\{6,6,5\}$
$\{2,6\}$	$\{4,6\}$	$\{6,6\}$		$\{6,6,6\}$

A decision tree

Initial solution

```
void diceSum(int dice, int desiredSum) {
    Vector<int> chosen;
    diceSumHelper(dice, desiredSum, chosen);
}
void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
    if (dice == 0) {
        if (sumAll(chosen) == desiredSum) {
            cout << chosen << endl; // base case
        }
    } else {
            for (int i = 1; i <= 6; i++) {
            chosen.add(i); // choose
            diceSumHelper(dice - 1, desiredSum, chosen); // explore
            chosen.remove(chosen.size() - 1); // un-choose
        }
    }
}
int sumAll(const Vector<int>& v) { // adds the values in given vector
    int sum = 0;
    for (int k : v) { sum += k; }
    return sum;
}
```


Wasteful decision tree

Optimizations

- We need not visit every branch of the decision tree.
- Some branches are clearly not going to lead to success.
- We can preemptively stop, or prune, these branches.
- Inefficiencies in our dice sum algorithm:
- Sometimes the current sum is already too high.
- (Even rolling 1 for all remaining dice would exceed the desired sum.)
- Sometimes the current sum is already too low.
- (Even rolling 6 for all remaining dice would exceed the desired sum.)
- The code must re-compute the sum many times.
$\bullet(1+1+1=\ldots, 1+1+2=\ldots, 1+1+3=\ldots, 1+1+4=\ldots, \ldots)$

diceSum solution

```
void diceSum(int dice, int desiredSum) {
    Vector<int> chosen;
    diceSumHelper(dice, 0, desiredSum, chosen);
}
void diceSumHelper(int dice, int sum, int desiredSum, Vector<int>& chosen) {
    if (dice == 0) {
            if (sum == desiredSum) {
                cout << chosen << endl; // solution found base case
        }
    } else if (sum + 1*dice > desiredSum // invalid state base case
        || sum + 6*dice < desiredSum) {
        return;
    } else {
            for (int i = 1; i <= 6; i++) {
                chosen.add(i); // choose
                diceSumHelper(dice - 1, sum + i, desiredSum, chosen); // explore
                chosen.remove(chosen.size() - 1); // un-choose
            }
    }
}
```


A Twist

- How would you modify diceSum so that it prints only unique combinations of dice, ignoring order?
- (e.g. don't print both $\{1,1,5\}$ and $\{1,5,1\}$) diceSum2(2, 7); diceSum2(3, 7);

$\{1$,	$6\}$
$\{2$,	$5\}$
$\{3$,	$4\}$
$\{4$,	$3\}$
$\{5$,	$2\}$
$\{6$,	$1\}$

$\{1$,	1,	$5\}$
$\{1$,	2,	$4\}$
$\{1$,	3,	$3\}$
$\{1$,	4,	$2\}$
$\{1$,	5,	$1\}$
$\{2$,	1,	$4\}$
$\{2$,	2,	$3\}$
$\{2$,	$2\}$	
$\{2$,	2,	$1\}$
$\{3$,	1,	$3\}$
$\{3$,	2,	$2\}$
$\{3$,	3,	$1\}$
$\{4$,	1,	$2\}$
$\{4$,	2,	$1\}$
$\{5$,	1,	$1\}$

