

Welcome to CS106B!

Who's Here Today?
● Aero/Astro
● Anthropology
● Art Practice
● Bioengineering
● Biology
● Business
● Chemical

Engineering
● Chemistry
● Civil/Environmental

Engineering
● Creative Writing
● Data Science
● East Asian Studies
● Economics

● Microbiology and
Immunology

● Middle Eastern
Languages / Culture

● MS&E
● Physics
● Political Science
● Product Design
● Psychology
● Public Policy
● Spanish
● Statistics
● STS
● Symbolic Systems
● SymSys
● Undeclared!

● Education
● Electrical Engineering
● Energy Resources

Engineering
● English
● Environmental Systems

Engineering
● FemGen
● Genetics
● History
● Human Biology
● Immunology
● International Relations
● Law
● Materials Science
● Mechanical

Engineering

Course Staff

Instructor: Keith Schwarz
(htiek@cs.stanford.edu)

Head TA: Kate Rydberg
(rydbergk@stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers

mailto:htiek@cs.stanford.edu
mailto:rydbergk@stanford.edu

https://cs106b.stanford.edu

Course Website

https://cs106b.stanford.edu/

Prerequisites

CS106A
(or equivalent)

(check out our course placement handout if you’re unsure!)

http://web.stanford.edu/class/cs106b/handouts/020%20Course%20Placement.pdf

Required Reading

● Available in the
bookstore. Some copies
are on reserve in the
Engineering library.

● We do recommend
picking up a copy of
this book, since it
provides a lot of useful
extra background
information.

Grading Policies

Grading Policies

35% Assignments

25% Midterm Exam

35% Final Exam

5% Section Participation

Eight Assignments

(One intro assignment that
goes out today, seven

programming assignments)

Eight Assignments

(One intro assignment that
goes out today, seven

programming assignments)

Grading Policies

35% Assignments

25% Midterm Exam

35% Final Exam

5% Section Participation

Midterm Exam

Tuesday, February 19th

7PM – 10PM
Location TBA

Midterm Exam

Tuesday, February 19th

7PM – 10PM
Location TBA

Grading Policies

35% Assignments

25% Midterm Exam

35% Final Exam

5% Section Participation

Final Exam

Monday, March 18th

8:30AM – 11:30AM
No alternate exams

except for OAE
accommodations.

Final Exam

Monday, March 18th

8:30AM – 11:30AM
No alternate exams

except for OAE
accommodations.

Grading Policies

35% Assignments

25% Midterm Exam

35% Final Exam

5% Section Participation

Discussion Sections

Weekly sections. Let’s go
talk about them!

Discussion Sections

Weekly sections. Let’s go
talk about them!

Discussion Sections

● There are weekly discussion sections in
CS106B. Section attendance is required.

● Sign up between Thursday, January 10th at
5:00PM and Sunday, January 13th at 5:00PM
by visiting

http://cs198.stanford.edu/section
● We don’t look at Axess for section

enrollments. Please make sure to sign up
here even if you’re already enrolled on Axess.

http://cs198.stanford.edu/section

CS106S

● CS106S is an optional one-unit add-on
course for CS106B that touches on
applications of the material to civics,
education, healthcare, and the like.

● This is “in addition to” rather than
“instead of” regular section.e

How Many Units?

int numUnits(bool isGrad) {
 if (isGrad) {
 return randomInteger(3, 5); // 3 to 5
 } else {
 return 5;
 }
}

Getting Help

Getting Help

● LaIR Hours!
● Sunday – Thursday, 7PM – 11PM
● Held in the first floor of Tresidder Student Union.
● LaIR hours start next week.

● Kate’s Office Hours in Gates B02
● Tuesdays and Thursdays, 1:30PM – 2:30PM.

● Keith's Office Hours in Gates 178
● Tuesdays, 10:00AM – 12:00PM.
● Stop on by! I’m happy to chat about just about

anything.

What's Next in Computer Science?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:
● Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://www.sawyoo.com/postpic/2014/11/executive-branch-u-s-government-chart_616676.jpg

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's
us!

Hey, that's
us!

This structure is called a tree.
Knowing how to model, represent,
and manipulate trees in software

makes it possible to solve interesting
problems.

This structure is called a tree.
Knowing how to model, represent,
and manipulate trees in software

makes it possible to solve interesting
problems.

Building a vocabulary of abstractions
makes it possible to represent and solve a

wider class of problems.

 How do we keep passwords secure
when servers are hacked all the time?

 How do we quickly check whether a
chemical has already been discovered?

Inputs can be just
about anything:

strings, ID numbers,
molecular shapes,
passwords, etc.

Inputs can be just
about anything:

strings, ID numbers,
molecular shapes,
passwords, etc.

Output is a seemingly
random number that

serves as a
“fingerprint” of the

input.

Output is a seemingly
random number that

serves as a
“fingerprint” of the

input.

Hash FunctionHash Function
553872289012

224224651111

Building a vocabulary of abstractions
makes it possible to represent and solve a

wider class of problems.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

Creating Trees

A recursive solution is a solution that is
defined in terms of itself.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

a
b
c
d

Source: https://datacenterfrontier.com/year-hyperscale-facebook-growth-innovation/

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Who's Here Today?
● Aero/Astro
● Anthropology
● Art Practice
● Bioengineering
● Biology
● Business
● Chemical

Engineering
● Chemistry
● Civil/Environmental

Engineering
● Creative Writing
● Data Science
● East Asian Studies
● Economics

● Microbiology and
Immunology

● Middle Eastern
Languages / Culture

● MS&E
● Physics
● Political Science
● Product Design
● Psychology
● Public Policy
● Spanish
● Statistics
● STS
● Symbolic Systems
● SymSys
● Undeclared!

● Education
● Electrical Engineering
● Energy Resources

Engineering
● English
● Environmental Systems

Engineering
● FemGen
● Genetics
● History
● Human Biology
● Immunology
● International Relations
● Law
● Materials Science
● Mechanical

Engineering

Speaking to the Computer

C++

What is C++?

● C++ is a programming language used to design
complex, high-performance systems.

● C++ is an influential language. Java inherited much
of its syntax from C++, and JavaScript retains many
of its traits.

● There are many features of C++ that aren’t present
in Java / JavaScript / Python, and those features
make it an attractive language for use in CS106B.

● C++ is a huge language that’s undergone many
revisions (it was invented in 1983; most recent
version is C++17) and we won’t be covering it in full
depth. Take CS106L or CS110 for more!

/* File: hello-world.cpp
 *
 * A canonical Hello, world! program
 * in C++.
 */

#include <iostream>
using namespace std;

int main() {
 cout << "Hello, world!" << endl;
 return 0;
}

/* File: retain-evens.cpp
 *
 * A program to filter out odd numbers from a list.
 */
#include <iostream>
#include "vector.h"
using namespace std;

Vector<int> evensIn(Vector<int> values) {
 Vector<int> result;
 for (int i = 0; i < values.size(); i++) {
 if (values[i] % 2 == 0)
 result += values[i];
 }
 return result;
}

int main() {
 Vector<int> values = { 1, 2, 3, 4, 5 };

 for (int elem: evensIn(values)) {
 cout << elem << endl;
 }

 return 0;
}

Your Action Items

● Read Chapter 1 of Programming
Abstractions in C++ to learn more about
the basics of C++ programming.
● If you’re coming from Java or JavaScript, much

of this syntax will seem familiar, but there are
some notable differences.

● If you’re coming from Python, it’s pretty similar,
but with lots of curly braces and semicolons.

● We’ll begin writing C++ code in earnest on
Wednesday.

Your Action Items

● Assignment 0: Welcome to CS106B is
due this Friday at the start of class
(11:30AM).
● Starter files and assignment handout are up on

the course website.
● No programming involved, but you’ll need to get

your development environment set up.
● There’s a bunch of documentation up on the

course website. Please feel free to reach out
to us if there’s anything we can do to help
out!

Your Action Items

● Some of the later assignments can be done
in pairs.
● Assignment 0 must be done individually.

Everyone needs to have a working development
environment and know how to work the
debugger.

● You may want to start thinking about who you’d
like to work with, since you’ll need to register
for the same section as the person you’ll be
working with.

Next Time

● Welcome to C++!
● Defining functions.
● Reference parameters.
● Introduction to recursion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

