

Collections, Part One

Outline for Today

● Container Types
● Holding lots of pieces of data.

● The Vector type
● Storing sequences.

● Reference Parameters
● A key part of C++ programming.

● Recursion on Vectors
● A problem with cell towers.

Organizing Data

● From CS106A or your own experience,
you’re probably seen basic data
structures like
● Arrays / lists:

– Java ArrayList, Python lists, JavaScript arrays.
● Associative arrays / Maps:

– Java HashMap, Python dict, JavaScript objects.

● These structures are the bread and
butter of programming.

Container Types

● A collection class (or container class) is a data
type used to store and organize data in some form.

● These are types like Java’s ArrayList and HashMap,
Python’s list and dict, and JavaScript’s array and
object.

● Our next three lectures are dedicated to exploring
different collections and how to harness them
appropriately.

● Later in the quarter, we’ll see how these types work
and analyze their efficiencies. For now, let’s just
focus on how to use them.

Vector

Vector

● The Vector is a collection class
representing a list of things.
● Similar to Java's ArrayList type and to arrays

in JavaScript and Python.
● Syntax is pretty friendly:

● Read/write an element: vec[index]
● Append elements: vec += a, b, c, d;
● Remove elements: vec.remove(index);
● Check the size: vec.size()

Range-Based For Loops

● In C++, you can iterate over all the items
of a container (string, Vector, etc.) using
this syntax:

 for (type var: container) {
 // do something with var
 }

● This visits each element of the container in
sequence. At each iteration, var represents
the currently-visited element.

myArr

myArr

Objects in C++

● In most programming languages, object
variables are references.

● The variable isn’t the object; it just says where
to look for that object.

● C++ is different. In C++, object variables

literally are the objects.

● While C++ does have a new keyword, we won’t

be using it until later in the quarter.

137 42 271 314

137 42 271 314

Pass-by-Value

● In C++, objects are passed into functions
by value. The function gets its own local
copy of the argument to work with.
● There’s a cool nuance where this isn’t 100%

true; come talk to me after class if you’re
curious!

● Don’t just take my word for it – watch
what happens!

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Little" "Teresa" "Kevin"characters

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Little" "Teresa" "Kevin"characters

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Little" "Teresa" "Kevin"characters "Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Little" "Teresa" "Kevin"characters "Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Chiron" "Teresa" "Kevin"characters "Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string> characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Chiron" "Teresa" "Kevin"characters "Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

Pass-by-Reference

● In C++, there’s the option to pass
parameters into function by reference.

● This means that the actual argument
itself gets sent into the function, not a
copy of it.

● To declare a function that takes an
argument by reference, put an
ampersand (&) after the type of the
argument.

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Little" "Teresa" "Kevin"moonlight

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Chiron" "Teresa" "Kevin"moonlight

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

void growUp(Vector<string>& characters) {
 characters += "Paula";
 characters[0] = "Chiron";
}

"Paula"

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

int main() {
 Vector<string> moonlight = { "Little", "Teresa", "Kevin" };

 growUp(moonlight);

 /* … */
}

"Chiron" "Teresa" "Kevin"moonlight "Paula"

Pass-by-const-Reference

● Passing a large object into a function by value can take
a lot of time.

● Taking parameters by reference avoids making a copy,
but risks that the object gets tampered with in the
process.

● As a result, it’s common to have functions that take
objects as parameters take their argument by const
reference:
● The “by reference” part avoids a copy.
● The “const” (constant) part means that the function can’t

change that argument.

Parameter Flowchart

What kind of
argument?

Need to change
the argument?

Pass by
value!

Pass by
reference!

Pass by const
reference!

Yes!

Nope! Object!

Primitive type!

Start!

This is the general convention used
in C++ programming. Please feel
free to ask questions about this
over the course of the quarter!

This is the general convention used
in C++ programming. Please feel
free to ask questions about this
over the course of the quarter!

Time-Out for Announcements!

Migrating to C++ Session

● We’ll be holding an extra about migrating
from Python or JavaScript to C++.
Details below:

Monday, January 14th

7:00PM – 8:30PM
Hewlett 102

● Feel free to stop on by!

Sections

● Discussion sections start this week!
● Forgot to sign up? The signup link will

reopen on Tuesday at 5PM, and you can
choose any open section time.

● This week’s handout of section problems
is available on the course website. Your
section leader will distribute hardcopies
in person.

return;

Recursion on Vectors

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple cases
are called base

cases.

These simple cases
are called base

cases.

These are the
recursive cases.

These are the
recursive cases.

Example: Cell Tower Purchasing

Buying Cell Towers

137 106 107 166 103 261 109

Buying Cell Towers

137

×
106

✓
107

×
166

✓
103

×
261

×
109

✓

People Covered: 106 + 166 + 109 = 381.

Towers can’t be built
in two adjacent cities.

Towers can’t be built
in two adjacent cities.

Buying Cell Towers

137

✓
106

×
107

✓
166

×
103

✓
261

×
109

✓

People Covered: 137 + 107 + 103 + 109 = 456.

Buying Cell Towers

137

×
106

✓
107

×
166

✓
103

×
261

✓
109

×

People Covered: 106 + 166 + 261 = 533.

Buying Cell Towers

137

✓
106

×
107

×
166

✓
103

×
261

✓
109

×

People Covered: 137 + 166 + 261 = 564.

Buying Cell Towers

99

×
100

✓
99

×

People Covered: 100.

Buying Cell Towers

99

✓
100

×
99

✓

People Covered: 99 + 99 = 198.

Question: Given a list of cities, what’s the
maximum number of people you can cover?

Buying Cell Towers

● Sometimes, the best option is to pick towers in an
alternating pattern, but sometimes it isn’t.

● Sometimes, the best option is to keep picking the
most populous city and building there, but
sometimes it isn’t.

● How can we guarantee we always find the best
solution?

137
✓

106
×

107
×

166
✓

103
×

261
✓

109
×

99
✓

100
×

99
✓

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X

Thinking Recursively

14 22 13 25 30 11 9

What are we
going to do with
this cell tower?

What are we
going to do with
this cell tower?

14 22 13 25 30 11 9

What are we
going to do with
this cell tower?

What are we
going to do with
this cell tower?

Option 1:
Don’t purchase
that tower.

Option 1:
Don’t purchase
that tower.

×

Now, do whatever is best
to maximize coverage to all

but the first city.

Now, do whatever is best
to maximize coverage to all

but the first city.

14 22 13 25 30 11 9

What are we
going to do with
this cell tower?

What are we
going to do with
this cell tower?

Option 2:
Purchase that cell

tower.

Option 2:
Purchase that cell

tower.

✓ ×

Now, do whatever is best
to maximize coverage to all
but the first two cities.

Now, do whatever is best
to maximize coverage to all
but the first two cities.

A Fork in the Road

● If there is at least one cell tower, we have a choice to
make about what to do with it.

● One of these options leads to the best outcome, but we

can’t know for sure what it is without further
exploration.

● Key Idea: Try both options, and take whichever one is
better.

…

 Exclude
 first tower

Include
first tower

A Recursive Solution

● Base Case: There are no cell towers.
● How many people can you provide coverage to in this

case?
● Recursive Case: There is at least one cell tower.

● Option 1: Exclude the first tower.

Option 2: Include that tower.

×
bestCoverageFor(cities.subList(1, cities.size() - 1))

A Recursive Solution

● Base Case: There are no cell towers.
● How many people can you provide coverage to in this

case?
● Recursive Case: There is at least one cell tower.

● Option 1: Exclude the first tower.

Option 2: Include that tower.

×
bestCoverageFor(cities.subList(1, cities.size() - 1))

A Recursive Solution

● Base Case: There are no cell towers.
● How many people can you provide coverage to in this

case?
● Recursive Case: There is at least one cell tower.

● Option 1: Exclude the first tower.
● Option 2: Include the first tower.

✓ ×
cities[0]

bestCoverageFor(cities.subList(2, cities.size() - 2))

(If there are at least two cities.)

137 106 107 166 103 261 109
Max coverage is 564.

99 100 99
Max coverage is 198.

How does this work?

14 22 13 14 22 13

22 13 13

No YesInclude 14?

Option 1: Cover 22
people.

Option 2: Cover 13
people, plus the 14
people we picked

earlier.

14 22 13 14 22 13

13

No YesInclude 14?

22 13

13

No YesInclude 22?

Option 1: Cover
13 people.

Option 2: Cover 0
people, plus the
22 people we
picked earlier.

14 22 13

22 13 13
No Yes

No YesInclude 14?

Include 22?

13
No YesInclude 13?

14 22 13

Option 1:
Cover 0 people.

Option 2: Cover 0 people,
plus the 13 from above.

14 22 13

22 13

13
No Yes

No Yes

No YesInclude 14?

Include 22?

Include 13?

13
No YesInclude 13?

14 22 13

Option 1:
Cover 0 people.

Option 2:
Cover 0

people, plus
the 13 from

above.

14 22 13 14 22 13

22 13

13

13

No Yes

No Yes

No Yes

No Yes

Include 14?

Include 22?

Include 13?

Include 13?

Wrapping Up

● If you’re looking at this example and are wondering
how on earth this works, no worries! That’s completely
normal. This way of thinking takes time to adjust to.

● Here are a few things you can do to get a better handle
on how things work.
● Draw a recursion tree for an example involving four cell

towers. Follow the sort of reasoning we just did to get a
sense for how this works.

● Step through the code in the debugger. That will give you a
sense of how things work in practice.

● Tweak and change the code. Poke and prod at it to see if you
see how all the pieces fit together. Form hypotheses about
how things will play out differently, and then validate those
hypotheses experimentally!

Your Action Items

● Start reading Chapter 5 of the textbook on
the different container types.

● Work on Assignment 1.
● Aim to complete all three recursion problems

by Tuesday evening.
– Not done by then? Don’t worry! Stop by the LaIR to

ask questions.
● Start working on Flesch-Kincaid readability.

● Play around with the cell towers example.
Ask questions about it! You’ll learn so much
more if you do.

Next Time

● Stacks
● How pancakes relate to parentheses.

● Queues
● Exploring all possible options.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

