

Thinking Recursively
Part I

Outline for Today

● Self-Similarity
● Recursive patterns are everywhere!

● Wrapper Functions
● Hiding recursion from clients.

● Recursive Enumeration
● Listing all solutions to a problem.

● Decision Trees
● A powerful framework.

Self-Similarity

An object is self-similar if it contains a smaller copy of itself.

An object is self-similar if it contains a smaller copy of itself.

Hey, it’s that
thing from

Assignment 1!

Hey, it’s that
thing from

Assignment 1!

Drawing Self-Similar Shapes

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different orientation.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different size.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-0 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-1 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-2 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-3 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-4 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-11 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-3 tree.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are
often described in terms of
some parameter called the

order.

Self-similar structures are
often described in terms of
some parameter called the

order.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

We can draw lines in the window
by calling

window.drawPolarLine(x, y, r, θ););

with θ specified in degrees.

We can draw lines in the window
by calling

window.drawPolarLine(x, y, r, θ););

with θ specified in degrees.

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

I certainly must tell you
where the tree goes and

how big it is!

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight,
 90, 8);

Tell you parameters like
the Order and Initial Angle?

Most unorthodox!

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

 GWindow window(kWindowWidth, kWindowHeight);

 double treeRootX = /* Here be dragons */;
 double treeRootY = /* Dragons, dragons, dragons */;
 double treeHeight = /* I like dragons! */;

 drawTree(window,
 treeRootX, treeRootY,
 treeHeight);

This is more acceptable
in polite company!

Wrapper Functions

● Some recursive functions need extra
arguments as part of an implementation
detail.
● In our case, the order of the tree is not

something we want to expose.
● A wrapper function is a function that does

some initial prep work, then fires off a
recursive call with the right arguments.

To Summarize

We drew this

tree recursively

We drew this
tree recursively

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/

Time-Out for Announcements!

RSVP using this link!RSVP using this link!

https://goo.gl/forms/9bSI296v64pmwFTA2
https://goo.gl/forms/9bSI296v64pmwFTA2

Assignment 2

● Assignment 2 is due this upcoming
Monday.
● If you’re following our suggested timetable,

you should be done with Crystals at this point
and should be working on Evil Hangman.

● Have questions?
● Stop by the LaIR!
● Email your section leader!

Submitting Your Work

● Each assignment handout has a
“Submission Instructions” section at the
end with information about what files to
submit.

● Please submit all the files listed
there. Otherwise, we can’t grade your
work.

● Thanks!

Looking Ahead: The Midterm

● Our midterm exam is Tuesday, February
19th.

● If you have any exam conflicts or will
need OAE accommodations, please
contact Kate as soon as possible.

● This is a big class – we need some lead
time to make everything work out!

Onward and Forward!

Recursive Enumeration

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Google)

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Google)

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

You need to send an emergency
team of doctors to an area.

Each doctor has different skills
(primary care, surgery, infectious
disease, etc.). Many have several
skills.

How do you find the smallest
team you can send in that has all
the essential skills covered?

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 1. List off every possible team of doctors
you could form.

 2. Pare the list down to just the teams
that have all the skills you need.

 3. Choose the smallest of these teams.

 ✓ ×

… … … …

 ✓ ✓ × ×

This structure is called a decision tree.

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

We’ll process
these trees
recursively.

We’ll process
these trees
recursively.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

void listSubsetsRec(const Set<int>& remaining,
 const Set<int>& used) {

 if (remaining.isEmpty()) {
 cout << used << endl;
 } else {
 int elem = remaining.first();

 /* Option 1: Include this element. */
 listSubsetsRec(remaining - elem, used + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining - elem, used);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

Your Action Items

● Work on Assignment 2
● It’s due on Monday. We hope you’ve finished

Crystals by this point and have started making
progress on Evil Hangman.

● Aim to get Evil Hangman mostly completed by
Friday, leaving the weekend as buffer time.

● Read Chapter 8 of the Textbook
● There’s a ton of goodies in there! It’ll help you

solidify your understanding.

Next Time

● Enumerating Permutations
● Finding the best order in which to perform

some tasks.
● Enumerating Combinations

● Finding the right team of the right size.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

