

Thinking Recursively
Part II

Outline for Today

● Recap from Last Time
● Where are we, again?

● Enumerating Permutations
● What order should we do things?

● Enumerating Combinations
● Finding the right group of the right size.

Recap from Last Time

We drew this

tree recursively

We drew this
tree recursively

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

Each recursive call just
draws one branch. The

sum total of all the
recursive calls draws

the whole tree.

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

This is called a
decision tree.

This is called a
decision tree.

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Two Trees

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

We’ll process
these trees
recursively.

We’ll process
these trees
recursively.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

Each recursive call just
processes one part of

the tree. The sum of all
recursive calls processes

the whole tree.

{H, I} {H} {I} { }

I? I?

H?

 ✓ ✓ × ×

 × ✓

{H} { }

{ }

void listSubsetsRec(const Set<int>& remaining,
 const Set<int>& used) {

 if (remaining.isEmpty()) {
 cout << used << endl;
 } else {
 int elem = remaining.first();

 /* Option 1: Include this element. */
 listSubsetsRec(remaining - elem, used + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining - elem, used);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

New Stuff!

Enumerating Permutations

You own a classy
print shop.

You have a list of
jobs to print.

Each job requires
some amount of
time and has a
hard deadline.

Which jobs should
you pick to

maximize your
profit?

You own a classy
print shop.

You have a list of
jobs to print.

Each job requires
some amount of
time and has a
hard deadline.

Which jobs should
you pick to

maximize your
profit?

Permutations

● A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E

Permutations

● A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E

Permutations

● A permutation of a sequence is a sequence
with the same elements, though possibly in a
different order.

● For example:
● E Pluribus Unum
● E Unum Pluribus
● Pluribus E Unum
● Pluribus Unum E
● Unum E Pluribus
● Unum Pluribus E

Enumerating Permutations

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Each decision is of
the form “do I pick

this element?”

Each decision is of
the form “do I pick

this element?”

List all permutations of
{A, H, I}

List all permutations of
{A, H, I}

Each decision is of
the form “what do I

pick next?”

Each decision is of
the form “what do I

pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

void listPermutationsRec(const string& remaining,
 const string& used) {

 if (remaining == "") {
 cout << used << endl;
 } else {
 /* Decide what comes next. */
 for (int i = 0; i < remaining.size(); i++) {
 listPermutationsRec(remaining.substr(0, i) +
 remaining.substr(i + 1),
 used + remaining[i]);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void listSubsetsRec(const Set<int>& remaining,
 const Set<int>& used) {

 if (remaining.isEmpty()) {
 cout << used << endl;
 } else {
 int elem = remaining.first();

 /* Option 1: Include this element. */
 listSubsetsRec(remaining - elem, used + elem);

 /* Option 2: Exclude this element. */
 listSubsetsRec(remaining - elem, used);
 }
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
No decisions

remain.

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 process decisions made;
 } else {
 for (each possible next choice) {
 exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 }
}

void exploreAllTheThings(initial state) {
 exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

Enumerating Combinations

You need to pick 11 people to serve as starters on your soccer (football) team.

You have a good way of evaluating, roughly speaking, how any given team of 11
players will get along.

How do you decide which 11 players to pick?

Generating Combinations

● Suppose that we want to find every way to choose exactly one
element from a set.

● We could do something like this:

for (int x: mySet) {

 cout << x << endl;

}

Generating Combinations

● Suppose that we want to find every way to choose exactly two
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 if (x != y) {

 cout << x << ", " << y << endl;

 }

 }

}

Generating Combinations

● Suppose that we want to find every way to choose exactly three
elements from a set.

● We could do something like this:

for (int x: mySet) {

 for (int y: mySet) {

 for (int z: mySet) {

 if (x != y && x != z && y != z) {

 cout << x << ", " << y << ", " << z << endl;

 }

 }

 }

}

Generating Combinations

● If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

● But what if we don't know in advance?
● Or we do know in advance, but it’s a

large number and we don’t want to type
until our fingers bleed?

Generating Combinations

Generating Combinations

Generating Combinations

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

Option 1:
Exclude this

person.

Option 1:
Exclude this

person.

Generating Combinations

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.

One way to choose
5 elements out of 9 is
to exclude the first

element, then to choose
5 elements out of the

remaining 8.
Option 1:

Exclude this
person.

Option 1:
Exclude this

person.

Generating Combinations

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

Option 2:
Include this

person.

Option 2:
Include this

person.

Generating Combinations

One way to choose
5 elements out of 9
is to include the first
element, then choose
4 elements out of
the remaining 8.

One way to choose
5 elements out of 9
is to include the first
element, then choose
4 elements out of
the remaining 8.

Option 2:
Include this

person.

Option 2:
Include this

person.

Judicial Decisions

Pick 4 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { Kagan }

Pick 5 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { }

Pick 5 Justices out of
{Kagan, Breyer, …, Thomas}

Chosen so far: { }

Include
Elena Kagan

 Exclude
 Elena Kagan

void exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 process decisions made;
 } else {
 for (each possible next choice) {
 exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 }
}

void exploreAllTheThings(initial state) {
 exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

void listCombinationsRec(const Set<int>& remaining, int k,
 const Set<int>& used) {
 if (k == 0) {
 cout << used << endl;
 } else if (remaining.isEmpty() || k > remaining.size()) {
 return; // Can't succeed.
 } else {
 int elem = remaining.first();

 /* Option 1: Exclude this element. */
 listCombinationsRec(remaining – elem, k, used);

 /* Option 2: Include this element. */
 listCombinationsRec(remaining - elems, k - 1, used + elem);
 }
}

Your Action Items

● Finish Assignment 2. It’s due on
Monday.
● Have questions? Stop by the LaIR!
● Don’t forget to run through the Assignment

Submission Checklist!
● Read Chapter 8 of the textbook. It’s

got a lot of goodies about recursion.

Next Time

● Recursive Optimization
● We can list all the solutions. How do we

choose the best one?
● Recursive Backtracking

● Finding a needle in a haystack.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

